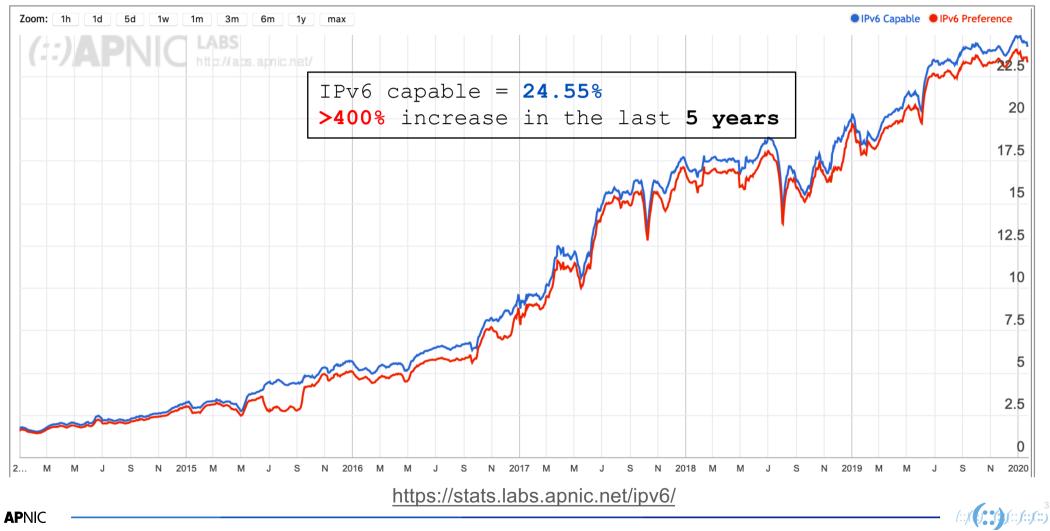
## IPv6 Deployment Update (Where are we now?)

22<sup>nd</sup> January 2020




## IPv6 Measurement

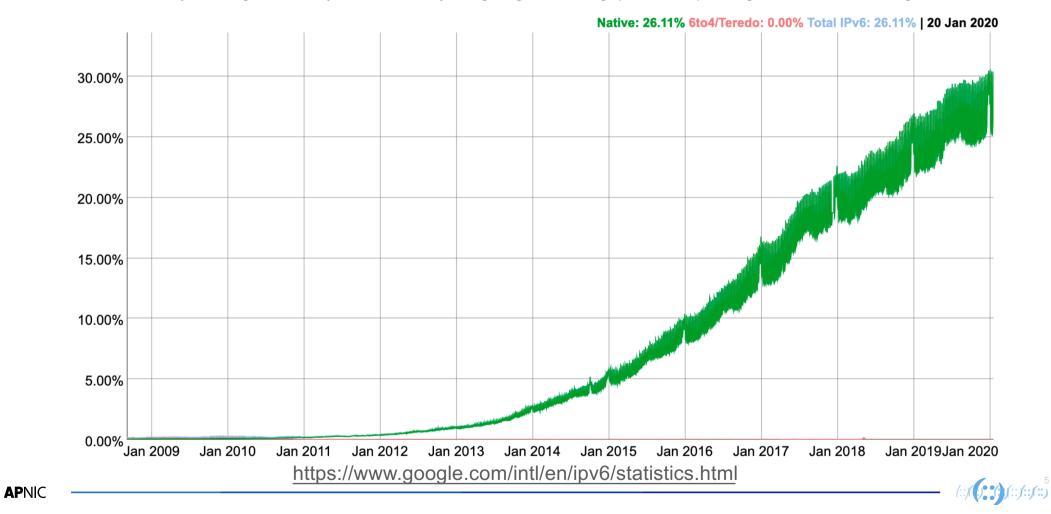
- Uses scripted online advertisement
   Over **12M** measurements/day!!
- The ad-script fetches three URLs

   IPv6 only URL, Dual-stack URL, IPv4 only URL
- If the device can fetch:
  - IPv6 URLs (*native/dual-stack*) over IPv6, deemed *IPv6 capable*
  - dual-stack URL over IPv6, deemed to prefer IPv6
    - RFC8305 (Happy Eyeballs) bias?

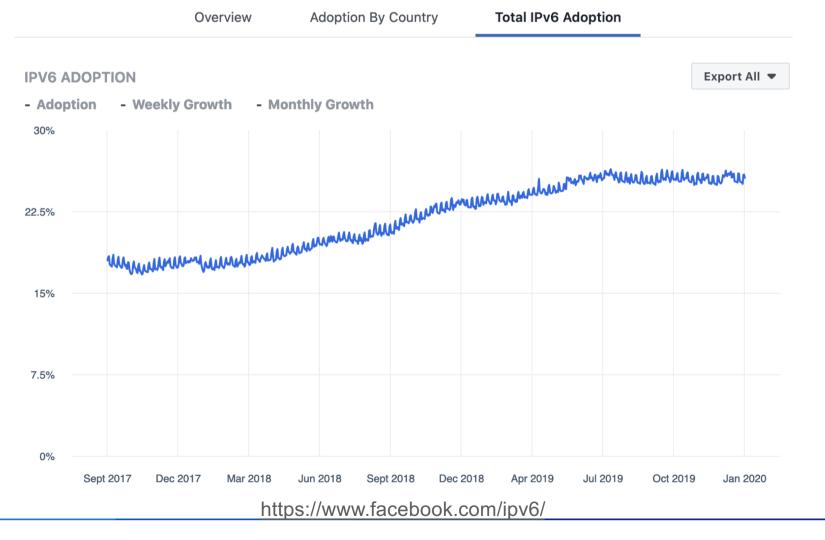
## IPv6 end user Readiness



## IPv6 Table – World


| Economy       | IPv6 capable (%) | Economy          | IPv6 capable (%) | Economy         | IPv6 capable (%) |
|---------------|------------------|------------------|------------------|-----------------|------------------|
| Mayotte       | 64.88            | Japan            | 35.87            | Canada          | 28.64            |
| India         | 64.52            | French Guiana    | 35.44            | Aland Islands   | 26.10            |
| Belgium       | 58.73            | Luxembourg       | 35.05            | Hungary         | 25.07            |
| United States | 56.19            | Finland          | 33.92            | Estonia         | 24.91            |
| Malaysia      | 45.42            | Uruguay          | 33.30            | UAE             | 24.49            |
| Greece        | 45.38            | UK               | 32.61            | Australia       | 24.30            |
| Germany       | 44.24            | Portugal         | 31.68            | New Zealand     | 23.89            |
| Taiwan        | 44.48            | Brazil           | 31.31            | Sri Lanka       | 23.83            |
| Vietnam       | 39.23            | Saint Barthelemy | 30.83            | Trinidad&Tobago | 22.95            |
| Saint Martin  | 38.72            | Mexico           | 30.69            | Netherlands     | 22.84            |
| France        | 37.54            | Thailand         | 29.47            | Guadeloupe      | 22.83            |
| Switzerland   | 36.54            | Norway           | 26.99            | Reunion         | 21.80            |

https://stats.labs.apnic.net/ipv6/ (22 Jan 2020)


## IPv6 in Action - Google

#### **IPv6 Adoption**

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.



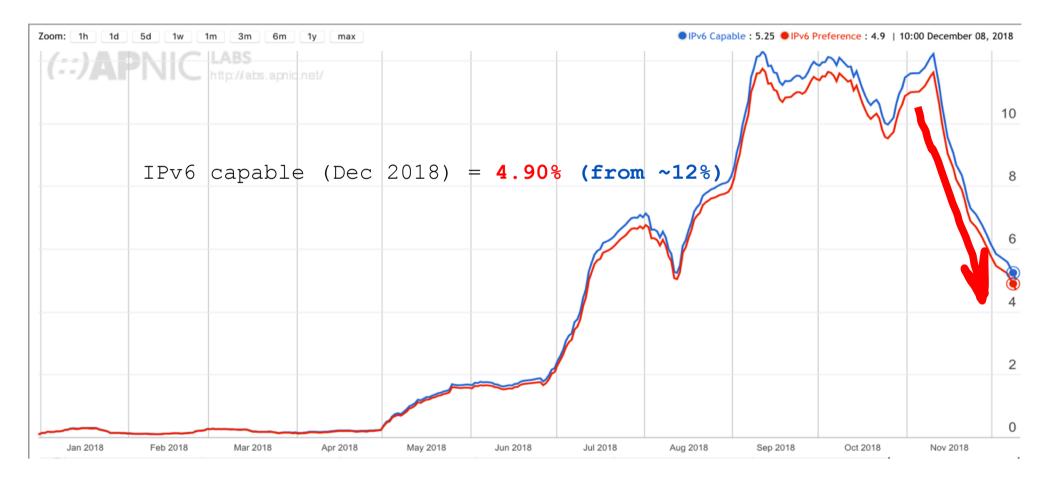
## IPv6 in Action - Facebook



6 (::)(();();();(:)(:)(:)

## What about Asia-Pacific?

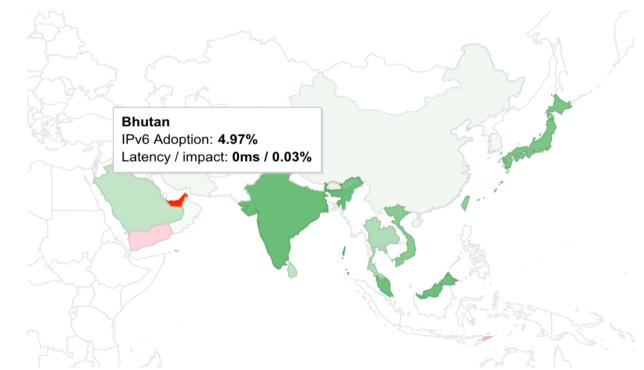
| Economy     | IPv6 capable (%) |
|-------------|------------------|
| India       | 64.52            |
| Malaysia    | 45.42            |
| Taiwan      | 44.08            |
| Vietnam     | 39.23            |
| Japan       | 35.87            |
| Thailand    | 29.47            |
| Australia   | 24.30            |
| New Zealand | 23.89            |
| Sri Lanka   | 23.83            |
| China       | 15.59            |
| South Korea | 15.25            |
| Singapore   | 13.72            |
| Масао       | 11.59            |




## South Asia Focus

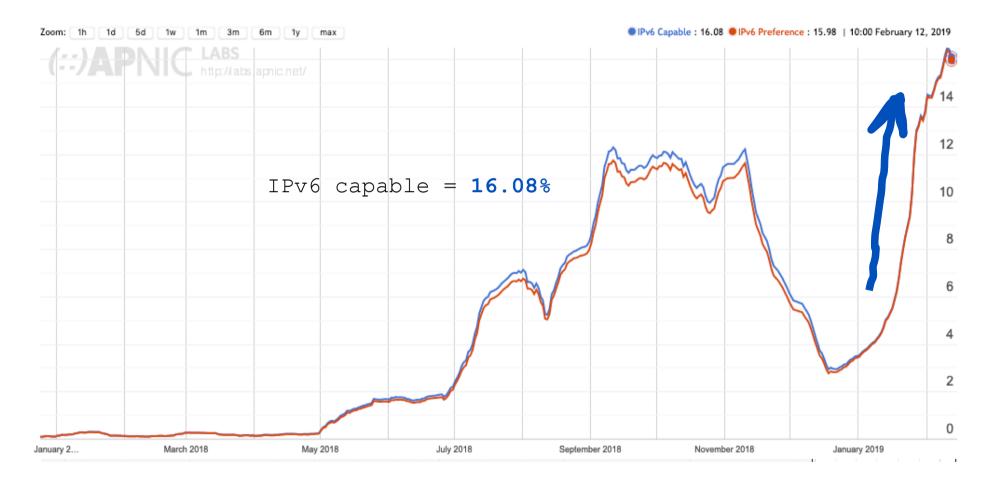
| Economy     | IPv6 capable (%) |  |  |
|-------------|------------------|--|--|
| India       | 64.52            |  |  |
| Sri Lanka   | 23.83            |  |  |
| Bhutan      | 8.64             |  |  |
| Nepal       | 6.13             |  |  |
| Maldives    | 3.39             |  |  |
| Afghanistan | 0.36             |  |  |
| Bangladesh  | 0.05             |  |  |
| Pakistan    | 0.04             |  |  |




## Something interesting - BT

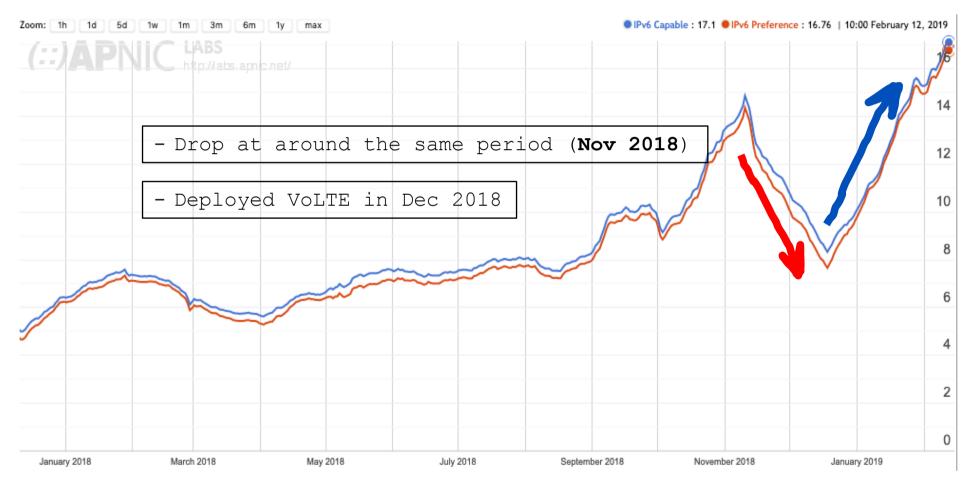


9 /::**/(:) (:)::/::/::**)


## Google's view - BT

**Per-Country IPv6 adoption** 




https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption

#### After the fix - BT

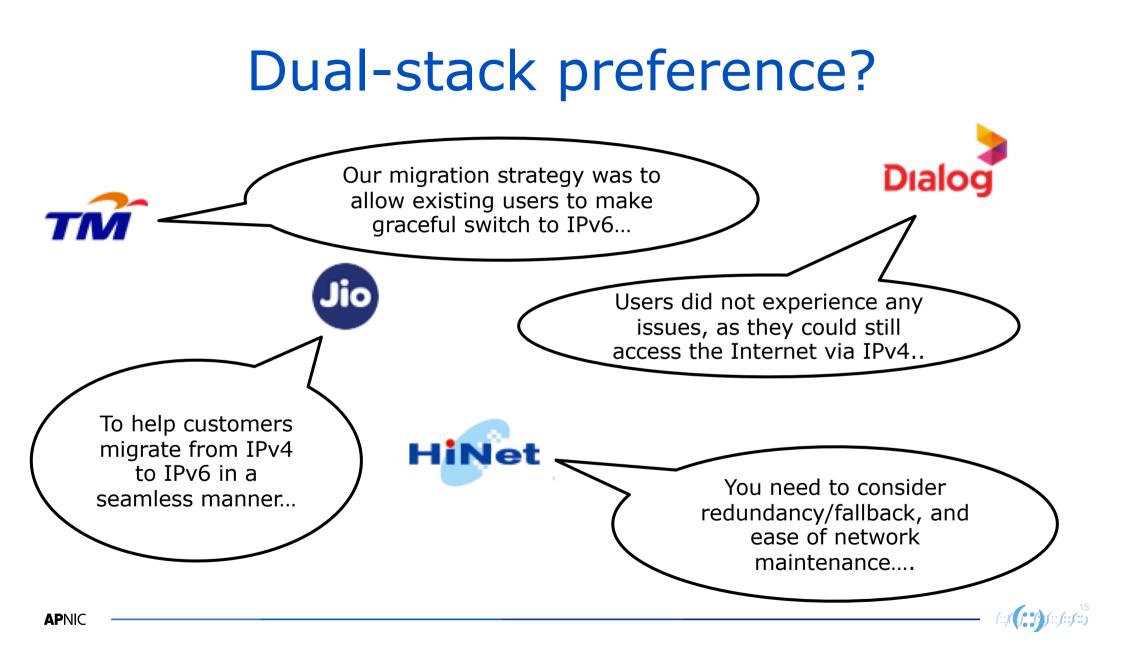


11 (::,(:):(:):(::,(::,(::)

## Coincidence - LK?



## IPv6 - Who is in control?


- The true driver for IPv6 adoption Mobile Internet!
- However, born and raised on NAT!
  - Still heavily based on CG-NAT



## IPv6 in Action: Mobile Networks

| Carrier          | Economy   | Deployment        |
|------------------|-----------|-------------------|
| Verizon Wireless | USA       | Dual-stack (2011) |
| T-Mobile         | USA       | 464XLAT (2012)    |
| Telekom Malaysia | Malaysia  | Dual-stack (2013) |
| SK Telecom       | Korea     | 464XLAT (2014)    |
| Telstra          | Australia | 464XLAT (2016)    |
| Reliance Jio     | India     | Dual-stack (2016) |
| Dialog Axiata    | Sri Lanka | Dual-stack (2016) |
| AIS              | Thailand  | Dual-stack (2017) |
| Bhutan Telecom   | Bhutan    | Dual-stack (2018) |
| Chungwa Telecom  | Taiwan    | Dual-stack (2018) |



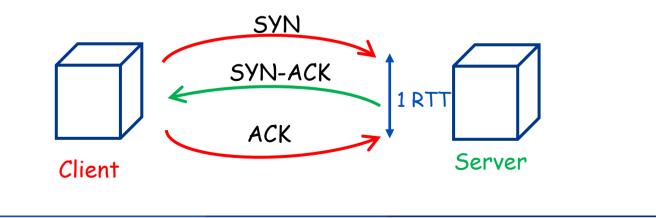


## IPv6 - Mobile Devices

- 464XLAT:
  - Android (4.3 Jelly Bean)
  - Windows Phone (8.1+)
- IPv6-only:

– iOS

- since iOS 9 (supported on WiFi for a long time)
- since June 2016, apps in App Store must support IPv6 <u>https://developer.apple.com/suppo</u> <u>rt/ipv6/</u>


- DHCPv6:
  - Windows
  - iOS
- Dual-stack:
  - KaiOS
    - Jio/Nokia 8110 feature handsets
  - iOS
    - reports for dual-stack since 11.3 (through carrier update)



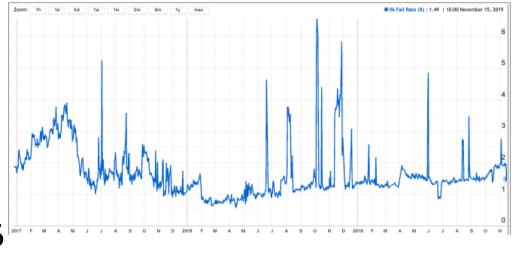
(::)() ()(::)::)(:)

## IPv6 Performance - Analysis

- We look at TCP (3-way) handshake
  - A received SYN with no subsequent ACK is interpreted as a failed connection attempt
  - The time between the receipt of the SYN and the subsequent
     ACK at the server is interpreted as the RTT (*not implicit RTT*)

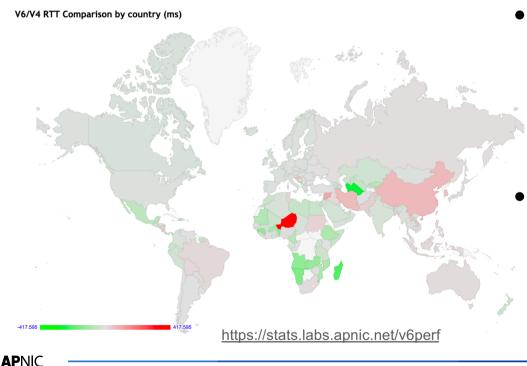





## IPv6 Performance

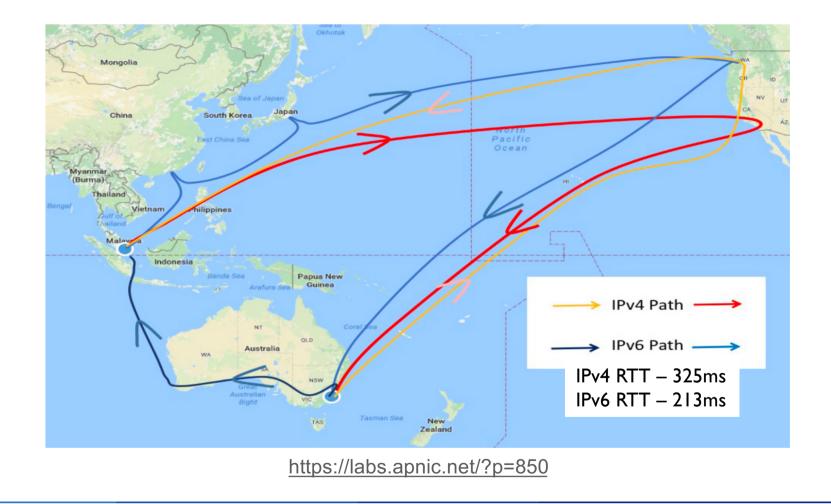
- Is IPv6 as reliable (robust) as IPv4?
  - Do all TCP connection attempts succeed?
    - Failure  $\sim$  no ACK for a received SYN
- Global IPv6 failure rate
   1.4% ⊗

**AP**NIC


- End point filters/firewalls?
  - Not allowing inbound IPv6? or
  - ICMPv6 (PTB) filtered? PMTUD failure?
- End points on unreachable IPv6 address?

Average V6 Connection Failure Rate for World (XA)




## IPv6 Performance

- Is IPv6 as fast as IPv4?
  - Comparison of RTT
    - time since SYN and subsequent ACK



- IPv6 appears faster
  - Africa, Europe, and the Americas
  - CG-NAT/NAT boxes?
- IPv4 seems faster
  - Asia & Oceania
  - Different routing paths for IPv4 and IPv6?

## IPv6 Performance & Routing Path



20 (::,((),(),(::,(::,(::)

## IPv6 Performance & Routing Path

| tashi-2.local (0.0.0.0)                    |                |       | F      | ri Nov | / 22 17      | :45:39 | 2019  | tashi-2.local (::) Fri Nov 22 17:45:39 2019                                                                              |
|--------------------------------------------|----------------|-------|--------|--------|--------------|--------|-------|--------------------------------------------------------------------------------------------------------------------------|
| Keys: Help Display mode Restart statis     | stics <b>(</b> | Order | of fie | lds    | <b>q</b> uit |        |       | K <mark>eys: H</mark> elp <b>D</b> isplay mode Restart statistics <b>O</b> rder of fields <b>q</b> uit                   |
|                                            | Packet         | ts    |        | F      | Pings        |        |       | Packets Pings                                                                                                            |
| Host                                       | Loss%          | Snt   | Last   | Avg    | Best         | Wrst S | StDev | Host Loss% Snt Last Avg Best Wrst StDev                                                                                  |
| 1. <b>192.168.0.1</b>                      | 72.2%          | 19    | 2.0    | 1.6    | 1.4          | 2.0    | 0.0   | 1. guest.nic.ad.jp 56.2% 17 1.4 1.5 1.1 2.1 0.0                                                                          |
| 2. niccrswa-vlan66.nic.ad.jp               | 61.1%          | 19    | 4.2    | 3.9    | 2.0          | 6.1    | 1.4   | 2. 2001:dc2:1000:4fff::1       68.8%       17       2.8       2.9       2.1       4.6       0.7                          |
| 3. nicfwc-vlan7.nic.ad.jp                  | 72.2%          | 18    | 3.2    | 3.4    | 2.1          | 4.6    | 0.7   | 3. 2001:dc2:1000:4001::1       64.7%       17       4.4       6.2       2.5       16.2       5.0                         |
| 4. dixcrswe-vlan6.nic.ad.jp                | 58.8%          | 18    | 3.1    | 10.5   | 2.8          | 42.3   | 14.2  | 4. dix-ied.nic.ad.jp 68.8% 17 3.4 3.2 2.8 3.4 0.0                                                                        |
| 5. dix-iee.nic.ad.jp                       | 72.2%          | 18    | 2.9    | 2.7    | 2.3          | 3.0    | 0.0   | 5. 2001:dc2:1000::4 58.8% 17 3.2 4.8 2.9 14.8 4.4                                                                        |
| 6. as2518-2.ix.jpix.ad.jp                  | 76.5%          | 18    | 3.1    | 2.9    | 2.7          | 3.1    | 0.0   | 6. gigabitethernet2-8.core1.tyo1.he.net 75.0% 17 3.2 4.1 3.0 6.7 1.6                                                     |
| 7. 133.208.191.144                         | 70.6%          | 18    | 3.4    | 4.5    | 3.1          | 9.3    | 2.7   | 7. 100ge10-2.core1.hkg1.he.net 75.0% 17 59.1 53.6 51.3 59.1 3.7                                                          |
| 8. vocus1-10g.hkix.net                     | 66.7%          | 18    | 57.1   | 56.8   | 56.6         | 57.1   | 0.0   | 8. vocus.gigabitethernet4-9.core1.hkg1.he 70.6% 17 53.0 53.2 53.0 53.4 0.0                                               |
| 9. Te-0-1-0-2-1.cor02.syd04.nsw.VOCUS.net  | 64.7%          | 18    | 230.4  | 233.2  | 230.0        | 248.0  | 7.2   | 9. Te-0-0-0-2-8.cor01.syd11.nsw.VOCUS.net 81.2% 17 182.4 182.4 182.0 182.7 0.0                                           |
| 10. BE-1.cor01.syd11.nsw.VOCUS.net.au      | 52.9%          | 18    | 232.8  | 233.0  | 232.8        | 233.7  | 0.0   | 10. BE-1.cor02.syd04.nsw.VOCUS.net.au         58.8%         17         182.4         181.9         182.6         0.0     |
| 11. ???                                    |                |       |        |        |              |        |       | 11. ???                                                                                                                  |
| 12. ???                                    |                |       |        |        |              |        |       | 12. ???                                                                                                                  |
| 13. ???                                    |                |       |        |        |              |        |       | 13. cor01.bne03.qld.vocus.net.au       50.0%       17       182.2       182.8       181.9       186.1       1.3          |
| 14. ten-1-2-0.bdr01.bne03.qld.VOCUS.net.au | 58.8%          | 18    | 210.0  | 210.2  | 209.8        | 210.7  | 0.0   | 14. 2402:7800:10:2::151       56.2%       16       182.4       194.8       182.0       204.7       11.9                  |
| 15. asn131107.bdr01.bne03.qld.vocus.net.au | 70.6%          | 18    | 210.7  | 210.6  | 210.4        | 210.8  | 0.0   | 15. 2402:7800:10:2::152       56.2%       16       204.3       204.4       203.9       204.9       0.0                   |
| 16. 202.125.96.226                         | 77.8%          | 18    | 210.8  | 210.7  | 210.2        | 211.0  | 0.0   | 16. 2001:df2:ee00:1::2       53.3%       16       182.3       182.0       183.0       0.0                                |
| 17. wiki.apnictraining.net                 | 82.4%          | 18    | 232.7  | 232.9  | 232.7        | 233.2  | 0.0   | 17. wiki.apnictraining.net         60.0%         16         181.8         192.6         181.6         244.8         25.6 |

IPv4

#### IPv6

/::/() ()/::/::/::/

## Where are we now?

- Global IPv6 end-user readiness ~ 24%
- IPv6 deployments on the rise (across diverse economy profiles)
  - 63% of network operators in Asia-Pacific have IPv6 resources
- Observed trend of dual-stack in recent deployments


"IPv6 has emerged from the 'Innovators' and 'Early Adoption' stages of deployment, and is now in the 'Early Majority phase"

- ISOC State of IPv6 Deployment (2018)

## How can we help?

- Track, measure, report
  - End-user readiness,
  - Performance analysis
- Trainings
  - Direct country assistance (Gov)
  - Standalone workshops
  - NOGs
- Technical Assistance
  - Remote or F2F

#### **Deploy IPv6**



Deploying IPv6 can be a challenge but many organizations around the world have made the transition successfully. Here's some of the elements you'll need to consider for your organization's deployment of IPv6.



https://www.apnic.net/community/ipv6



# THANK YOU

