IPv6 Addressing

ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok

Agenda

Recap: how it worked with IPv4
 Getting IPv6 address space
 Constructing a scalable IPv6 address plan
 IPv6 addressing on LANs
 IPv6 address plan example

How it used to be

Looking back at IPv4

How did it work for IPv4?

□ Up until 1994:

- Operators applied to InterNIC for address space
 1993 onwards: included RIPE NCC and APNIC
- Class A: Big organisations
- Class B: Medium organisations
 - From 1992 onwards, multiple class Cs often handed out instead of single class Bs
- Class C: Small organisations
- From 1994 onwards (classless Internet)
 - Address space distributed by InterNIC (replaced by ARIN in 1998) and the other RIRs
 - Distribution according to demonstrated need (not want)

IPv4 address plans (pre 1994)?

- Prior to 1994, doing an address plan in IPv4 was very simple
- Class C was used for one LAN
 - If entity had more than one LAN, they'd normally get a class B
- An organisation with a class B had 256 possible LANs
 - And that was more than most networks had in those days
- Organisations with more than 256 LANs tended to be Universities, big IT companies, etc
 - They either had multiple class Bs, or even a class A

Typical early 90s address plan

- Organisation was not connected to the Internet as such
 - But used TCP/IP internally
- Would generally use 10.0.0/8
 - Or any other class A that InterNIC had not handed out
- □ 10.X.Y.Z was a typical layout, where:
 - X = building number
 - Y = floor number
 - Z = host address
 - Where each subnet was a /24 (like a class C)
- When these organisations connected to the Internet, they had to renumber
 - Often into a /19 (the minimum allocation then)

IPv4 address plans (post 1994)?

- In the classful Internet days, IP address planning didn't really exist
 - The address space was big enough for most needs, as the number of devices and LANs were small
- With the arrival of classless Internet, and IPv4 runout in the early 90s
 - IP address planning was needed
 - Organisations got address space according to demonstrated need
 - A previous class B might now only get a /19
 - LANs no longer were automatically /24s
 - etc

IPv4 address plans (post 1994)?

Advent of NAT assisted with delaying IPv4 runout

- End-user got single public address, and NATed on to that address
 - (End-users could get lazy again)
- Operators became more careful:
 - RIR policy required "demonstrated need"
 - Further allocations made only when existing allocations were proven to be mostly used up
 - Started assigning address space across backbone according to the needs of the infrastucture
 - No gaps, but still no real plan
 - /30s for point-to-point links etc
 - Although the "plans" often separated infrastructure address space from what went to customers

IPv4 address plans (today)

- Chaotic?
- Unstructured?
- Undocumented?
- With IPv4 address space almost all depleted
 - Operators becoming ever more creative
 - Operators extracting the last "drops" from their address space holdings
 - It is a scramble just to keep network infrastructure addressed with public IPv4
 - Some operators even use NAT within their backbones
 - Some operators are reclaiming IPv4 address space loaned to their customers
 - This hotch potch cannot and does not lead to good planning

IPv4 address plans (today)

- More serious issues because of the lack of structure, lack of planning:
 - Infrastructure security filters become very hard to manage
 - Adding yet another small block of IPv4 addresses to perimeter and control plane filters
 - Traffic engineering is more challenging
 - Lots of small blocks of address space to manage and manipulate
 - With impacts on size of the global routing table too!
 - Infrastructure addressing is difficult to manage
 - Loopbacks and backbone point-to-point links no longer out of one contiguous block
 - Access address pool resizing
 - Broadband access pools renumbering, reassigning, etc

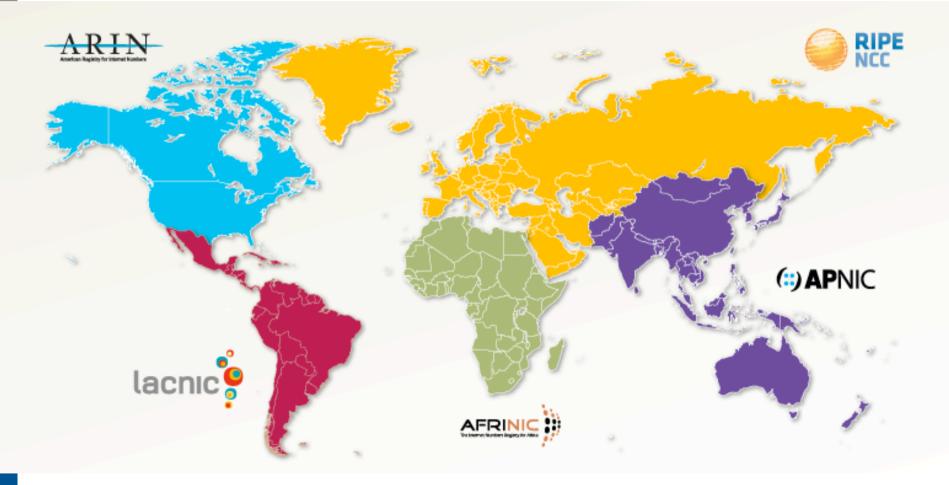
IPv6

- IPv6 changes all this
- Address space delegations are generous
 - Reminders of the "old days" of classful IPv4
- No NAT
- Address planning is very possible
- Address planning is very necessary
- Documentation is very necessary
- Operators accustomed to handling IPv4 in the 1980s and early 1990s might be able to use those old skills for IPv6 !

IPv6 Address Planning

Where to get IPv6 addresses

Your upstream ISP


Africa

- AfriNIC http://www.afrinic.net
- Asia and the Pacific
 - APNIC http://www.apnic.net
- North America
 - ARIN http://www.arin.net
- Latin America and the Caribbean
 - LACNIC http://www.lacnic.net

Europe and Middle East

RIPE NCC – http://www.ripe.net/info/ncc

Internet Registry Regions

Getting IPv6 address space (1)

From your Regional Internet Registry

- Become a member of your Regional Internet Registry and get your own allocation
 - Membership open to all organisations who are operating a network
- Address allocation policies listed on the individual RIR website
- Minimum allocation is a /32 (or larger if you will have more than 65k /48 assignments)

Getting IPv6 address space (2)

From your upstream ISP

- Receive a /48 from upstream ISP's IPv6 address block
- Receive more than one /48 if you have more than 65k subnets

■ If you need to multihome:

- Apply for a /48 assignment from your RIR
- Multihoming with the provider's /48 will be operationally challenging

Provider policies, filters, etc

Do NOT use 6to4

Some entities still use 6to4

- Strongly discouraged due to serious operational and security issues
- Read http://datatracker.ietf.org/doc/draft-ietfv6ops-6to4-to-historic for some of the reasoning why

FYI: 6to4 operation:

- Take a single public IPv4 /32 address
- 2002:<ipv4 /32 address>::/48 becomes your IPv6 address block, giving 65k subnets
- Requires a 6to4 gateway
- 6to4 is a means of connecting IPv6 islands across the IPv4 Internet

Nibble Boundaries

- IPv6 offers network operators more flexibility with addressing plans
 - Network addressing can now be done on nibble boundaries

• For ease of operation

Rather than making maximum use of a very scarce resource

• With the resulting operational complexity

- A nibble boundary means subnetting address space based on the address numbering
 - Each number in IPv6 represents 4 bits = 1 nibble
 - Which means that IPv6 addressing can be done on 4-bit boundaries

Nibble Boundaries – example

Consider the address block 2001:db8:0:10::/61

The range of addresses in this block are:

2001:0db8:0000:0010:0000:0000:0000 to 2001:0db8:0000:0017:ffff:ffff:ffff

- Note that this subnet only runs from 0010 to 0017.
 The adjacent block is 2001 (db2:0:10:) (01
- The adjacent block is 2001:db8:0:18::/61

2001:0db8:0000:0018:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:ffff

The address blocks don't use the entire nibble range

Nibble Boundaries – example

- Now consider the address block 2001:db8:0:10::/60
 - The range of addresses in this block are:

2001:0db8:0000:0010:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:ffff

- Note that this subnet uses the entire nibble range, 0 to f
- Which makes the numbering plan for IPv6 simpler
 - This range can have a particular meaning within the ISP block (for example, infrastructure addressing for a particular PoP)

Addressing Plans – Infrastructure

- All Network Operators should obtain a /32 from their RIR
- Address block for router loop-back interfaces
 - Number all loopbacks out of one /64
 - /128 per loopback
- Address block for infrastructure (backbone)
 - /48 allows 65k subnets
 - /48 per region (for the largest multi-national networks)
 - /48 for whole backbone (for the majority of networks)
 - Infrastructure/backbone usually does NOT require regional/geographical addressing
 - Summarise between sites if it makes sense

Addressing Plans – Infrastructure

What about LANs?

/64 per LAN

What about Point-to-Point links?

- Protocol design expectation is that /64 is used
- /127 now recommended/standardised
 - http://www.rfc-editor.org/rfc/rfc6164.txt
 - (reserve /64 for the link, but address it as a /127)
- Other options:
 - /126s are being used (mimics IPv4 /30)
 - /112s are being used
 - Leaves final 16 bits free for node IDs
 - Some discussion about /80s, /96s and /120s too

Addressing Plans – Infrastructure

□ NOC:

- ISP NOC is "trusted" network and usually considered part of infrastructure /48
 - Contains management and monitoring systems
 - Hosts the network operations staff
 - take the last /60 (allows enough subnets)

Critical Services:

- Network Operator's critical services are part of the "trusted" network and should be considered part of the infrastructure /48
- For example, Anycast DNS, SMTP, POP3/IMAP, etc
 - **Take the second /64**
 - **•** (some operators use the first /64 instead)

Addressing Plans – ISP to Customer

Option One:

- Use ipv6 unnumbered
- Which means no global unicast ipv6 address on the pointto-point link
- Router adopts the specified interface's IPv6 address
 - Router doesn't actually need a global unicast IPv6 address to forward packets

```
interface loopback 0
ipv6 address 2001:db8::1/128
interface serial 1/0
ipv6 address unnumbered loopback 0
```

Addressing Plans – ISP to Customer

Option Two:

- Use the second /48 for point-to-point links
- Divide this /48 up between PoPs
- Example:
 - For 10 PoPs, dividing into 16, gives /52 per PoP
 - Each /52 gives 4096 point-to-point links
 - Adjust to suit!
- Useful if ISP monitors point-to-point link state for customers
 - Link addresses are untrusted, so do not want them in the first /48 used for the backbone &c
- Aggregate per router or per PoP and carry in iBGP (not ISIS/OSPF)

Customers get one /48

 Unless they have more than 65k subnets in which case they get a second /48 (and so on)

In typical deployments today:

- Several ISPs are giving small customers a /56 and single LAN end-sites a /64, e.g.:
 - /64 if end-site will only ever be a LAN
 - /56 for small end-sites (e.g. home/office/small business)
 - /48 for large end-sites
- This is another very active discussion area
- Observations:
 - Don't assume that a mobile endsite needs only a /64
 - Some operators are distributing /60s to their smallest customers!!

Consumer Broadband Example:

- DHCPv6 pool is a /48
 - DHCPv6 hands out /60 per customer
 - Which allows for 4096 customers per pool

Business Broadband Example:

- DHCPv6 pool is a /48
 - DHCPv6 hands out /56 per customer
 - Which allows for 256 customers per pool
- If BRAS has more than 256 business customers, increase pool to a /47
 - This allows for 512 customers at /56 per customer
- Increasing pool to /46 allows for 1024 customers
- BRAS announces entire pool as one block by iBGP

Business "leased line":

- /48 per customer
- One stop shop, no need for customer to revisit ISP for more addresses until all 65k subnets are used up
- Hosted services:
 - One physical server per vLAN
 - One /64 per vLAN
 - How many vLANs per PoP?
 - /48 reserved for entire hosted servers across backbone
 Internal sites will be subnets and carried by iBGP

Geographical delegations to Customers:

- Network Operator subdivides /32 address block into geographical chunks
- E.g. into /36s
 - Region 1: 2001:db8:1xxx::/36
 - **Region 2: 2001:db8:2xxx::/36**
 - Region 3: 2001:db8:3xxx::/36
 - etc
- Which gives 4096 /48s per region
- For Operational and Administrative ease
- Benefits for traffic engineering if Network Operator multihomes in each region

Sequential delegations to Customers:

- After carving off address space for network infrastructure, Network Operator simply assigns address space sequentially
- Eg:

Infrastructure:	2001:db8:0::/48
Customer P2P:	2001:db8:1::/48
Customer 1:	2001:db8:2::/48
Customer 2:	2001:db8:3::/48

□ etc

 Useful when there is no regional subdivision of network and no regional multihoming needs Addressing Plans – Routing Considerations

- Carry Broadband pools in iBGP across the backbone
 - Not in OSPF/ISIS
- Multiple Broadband pools on one BRAS should be aggregated if possible
 - Reduce load on iBGP
- Aggregating leased line customer address blocks per router or per PoP is undesirable:
 - Interferes with ISP's traffic engineering needs
 - Interferes with ISP's service quality and service guarantees

Addressing Plans – Traffic Engineering

Smaller providers will be single homed

The customer portion of the ISP's IPv6 address block will usually be assigned sequentially

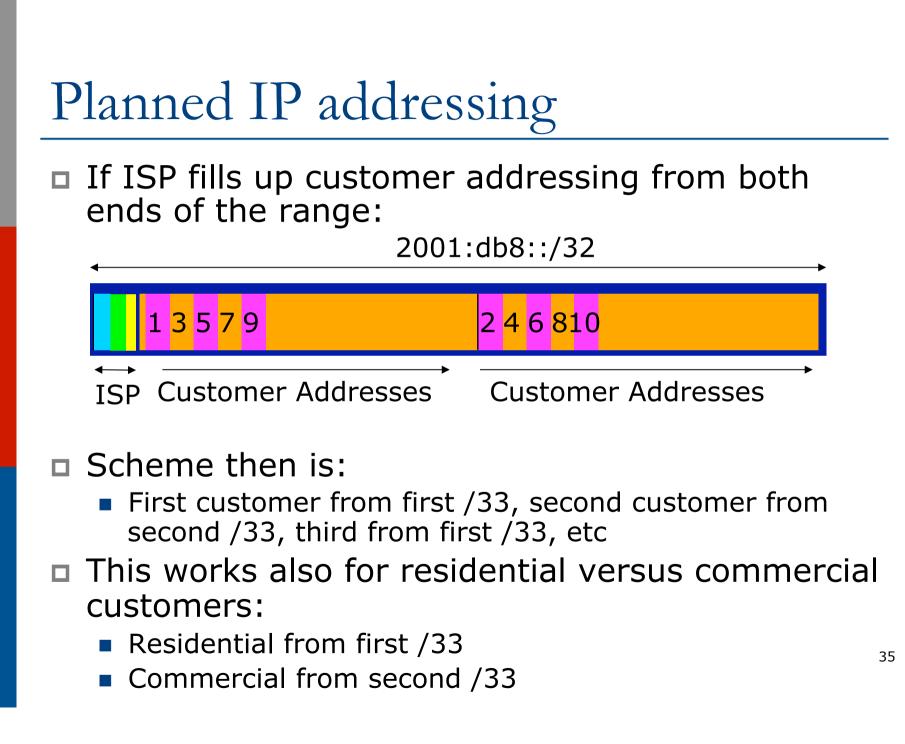
Larger providers will be multihomed

- Two, three or more external links from different providers
- Traffic engineering becomes important
- Sequential assignments of customer addresses will negatively impact load balancing

Addressing Plans – Traffic Engineering

- ISP Router loopbacks and backbone point-topoint links make up a small part of total address space
 - And they don't attract traffic, unlike customer address space
- Links from ISP Aggregation edge to customer router needs one /64
 - Small requirements compared with total address space
 - Some ISPs use IPv6 unnumbered
- Planning customer assignments is a very important part of multihoming
 - Traffic engineering involves subdividing aggregate into pieces until load balancing works

ISP fills up customer IP addressing from one end of the range:


2001:db8::/32

1234

ISP

Customer Addresses

- Customers generate traffic
 - Dividing the range into two pieces will result in one /33 with all the customers and the ISP infrastructure the addresses, and one /33 with nothing
 - No loadbalancing as all traffic will come in the first /33
 - Means further subdivision of the first /33 = harder work

Planned IP Addressing

- This works fine for multihoming between two upstream links (same or different providers)
- Can also subdivide address space to suit more than two upstreams
 - Follow a similar scheme for populating each portion of the address space
- Consider regional (geographical) distribution of customer delegated address space
- Don't forget to always announce an aggregate out of each link

Addressing Plans – Advice

Customer address assignments should not be reserved or assigned on a per PoP basis

- Follow same principle as for IPv4
- Subnet aggregate to cater for multihoming needs
- Consider regional delegation
- ISP iBGP carries customer nets
- Aggregation within the iBGP not required and usually not desirable
- Aggregation in eBGP is very necessary
- Backbone infrastructure assignments:
 - Number out of a single /48
 - Operational simplicity and security
 - Aggregate to minimise size of the IGP

Addressing Plans – Scheme

Looking at Infrastructure:

2001:db8::/32

/64	2001:db8:0:	:/48	/60	2001:db8:1::/48 to 2001:db8:ffff::/48
Loopbacks	Backbone Pt	P & LANs	NOC	Customers
Alterna	ative:			
•		2001:db8:	:/32	
/64 20	01:db8:0::/48	/60 2001	:db8:1::/48	2001:db8:2::/48 to 2001:db8:ffff::/48
Loopbacks	Backbone PtP & LANs	NOC Cu	stomer PtP	Customers

Addressing Plans Planning

- Registries will usually allocate the next block to be contiguous with the first allocation
 - (RIRs use a sparse allocation strategy industry goal is aggregation)
 - Minimum allocation is /32
 - Very likely that subsequent allocation will make this up to a /31 or larger (/28)
 - So plan accordingly

Addressing Plans (contd)

Document infrastructure allocation

- Eases operation, debugging and management
- Document customer allocation
 - Customers get /48 each
 - Prefix contained in iBGP
 - Eases operation, debugging and management
 - Submit network object to RIR Database

Addressing Tools

Examples of IP address planning tools:

- NetDot netdot.uoregon.edu (recommended!!)
- OpenNetAdmin opennetadmin.com
- HaCi sourceforge.net/projects/haci
- Racktables racktables.org
- IPAT nethead.de/index.php/ipat
- freeipdb home.globalcrossing.net/~freeipdb/
- Examples of IPv6 subnet calculators:
 - ipv6gen code.google.com/p/ipv6gen/
 - sipcalc www.routemeister.net/projects/sipcalc/

IPv6 Addressing on LANs

IPv6 Addressing on LANs

Two options:

- Stateless Autoconfiguration (SLAAC)
 - Client learns IPv6 address from the router on the subnet
- DHCPv6
 - Client learns IPv6 address from a DHCP server (as for IPv4)

SLAAC

IPv6 client learns address "from the LAN"

- Sends out "router solicit"
- Router responds with "router advertisement" containing subnet and default gateway
- Initial client state:

```
Client:
en3: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 68:5b:35:7d:3b:bd
inet6 fe80::6a5b:35ff:fe7d:3bbd%en3 prefixlen 64 scopeid 0x8
```

Router does not need any specific configuration

```
interface FastEthernet0/0
ipv6 address 2001:db8::1/64
ipv6 nd router-preference high
!
```

SLAAC

On receiving response from the router:

en3: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 68:5b:35:7d:3b:bd
 inet6 fe80::6a5b:35ff:fe7d:3bbd%en3 prefixlen 64 scopeid 0x8
 inet6 2001:db8:100::6a5b:35ff:fe7d:3bbd prefixlen 64 autoconf
 inet6 2001:db8:100::18eb:2861:458e:862b prefixlen 64 autoconf temporary
 nd6 options=1<PERFORMNUD>

Internet6:			
Destination	Gateway	Flags	Netif Expire
default	fe80::219:30ff:fee	UGC	en3

Note the temporary address – this is the one used for all IPv6 connectivity, and has a lifetime determined by the client's operating system

DHCPv6

Works like DHCP on IPv4 infrastructure:

- DHCPv6 server distributes addresses from a pool on request from client
- DHCPv6 client configures IPv6 address
- Sample server configuration (Cisco IOS):

```
ipv6 dhcp pool LABNET
dns-server 2001:DB8:1::1
dns-server 2001:DB8:2::2
domain-name labnet
!
interface VLAN1
ipv6 address 2001:DB8::1/64
ipv6 dhcp server LABNET
!
```

Distributing subnets by DHCP

Two options:

- Static assignment (as in IPv4)
 - Tell the customer what subnet they have
- DHCPv6-PD
 - Use DHCPv6 Prefix Delegation feature to distribute subnets automatically

DHCPv6-PD

□ New for IPv6, is Prefix-Delegation (PD)

- Allows DHCP server to delegate subnets to clients
- Especially useful for Broadband deployments
- Server example on BRAS (Cisco IOS):

```
ipv6 dhcp pool BB-CUST-1
  prefix-delegation pool BBCUST1 lifetime 1800 600
!
ipv6 local pool BBCUST1 2001:DB8:F00::/40 56
!
interface FastEthernet0/0
ipv6 enable
ipv6 dhcp server BB-CUST-1
!
```

DHCPv6-PD

Client receives address delegation from the server:

```
interface Dialer0
description ADSL link to MY ISP
ipv6 address autoconfig default
ipv6 dhcp client pd ADSL-PD rapid-commit
!
interface Vlan1
description Home Network
ipv6 address ADSL-PD ::1/64
!
interface Vlan2
description Home IP/TV Network
ipv6 address ADSL-PD ::1:0:0:0:1/64
!
```

Vlan1 - IPv6 address: 2001:DB8:F00:3100::1/64
Vlan2 - IPv6 address: 2001:DB8:F00:3101::1/64

Example Address Plan

Example Address Plan

Generic Network Operator

- Has 2001:db8::/32 address block
- Takes first /48 for network infrastructure □ First /64 for loopbacks Last /60 for NOC
- Takes second /48 for point to point links to customer sites
- Remainder of address space for delegation to customers, content hosting and broadband pools
- Network Operator has 20 PoPs around the country

Example: Loopback addresses

- 2001:db8:0::/48 is used for infrastructure
- Out of this, 2001:db8:0:0::/64 is used for loopbacks
 - Each loopback is numbered as a /128
- Scheme adopted is:
 - 2001:db8::XXYY/128
 - Where XX is the PoP number (01 through FF)
 - Where YY is the router number (01 through FF)
 - Scheme is good for:
 - **255** PoPs
 - 255 routers per PoP
 - keeping addresses small/short

Loopbacks Example

PoP 1 Routers	Loopbacks	PoP 10 Routers	Loopbacks
cr1	2001:db8::101/128	cr1	2001:db8::a01/128
cr2	2001:db8::102/128	cr2	2001:db8::a02/128
br1	2001:db8::103/128	sr1	2001:db8::a05/128
br2	2001:db8::104/128	sr2	2001:db8::a06/128
sr1	2001:db8::105/128	ar1	2001:db8::a10/128
sr2	2001:db8::106/128	ar2	2001:db8::a11/128
ar1	2001:db8::110/128	gw1	2001:db8::a20/128
ar2	2001:db8::111/128	gw2	2001:db8::a21/128
gw1	2001:db8::120/128	etc	
gw2	2001:db8::121/128		
etc			

Example: Backbone Point to Point links

Backbone Point to Point links come out of Infrastructure block 2001:db8:0::/48

- Scheme adopted is: 2001:db8:0:MNXY::Z/64
- Where
 - MN is the PoP number (01 through FF)
 - XY is the LAN number (00 through 0F)
 - XY is the P2P link number (10 through FF)
 - Z is the interface address (0 or 1)
- Scheme is good for 16 LANs and 240 backbone PtP links per PoP, and for 255 PoPs

LANs and PtP Links Example

PoP 1	Subnet	PoP 14	Subnet
LAN1	2001:db8:0:101::/64	LAN1	2001:db8:0:e01::/64
LAN2	2001:db8:0:102::/64	LAN2	2001:db8:0:e02::/64
LAN3	2001:db8:0:103::/64	LAN3	2001:db8:0:e03::/64
PtP1	2001:db8:0:111::/64	LAN4	2001:db8:0:e04::/64
PtP2	2001:db8:0:112::/64	LAN5	2001:db8:0:e05::/64
PtP3	2001:db8:0:113::/64	PtP1	2001:db8:0:e11::/64
PtP4	2001:db8:0:114::/64	PtP2	2001:db8:0:e12::/64
PtP5	2001:db8:0:115::/64	PtP3	2001:db8:0:e13::/64
PtP6	2001:db8:0:116::/64	etc	
PtP7	2001:db8:0:117::/64		
etc			

Note: PtP links have /64 reserved but are addressed as /127s 55

Links to Customers

- Some ISPs use "ip unnumbered" for IPv4 interface links
 - So replicate this in IPv6 by using "ipv6 unnumbered" to address the links
 - This will not require one /48 to be taken from the ISP's /32 allocation
- Other ISPs use real routable addresses
 - So set aside the second /48 for this purpose
 - Gives 65536 possible customer links, assuming a /64 for each link

Customer Links Example

Customer	Point to point link address
Customer 1	2001:db8:1:0::/64
Customer 2	2001:db8:1:1::/64
Customer 3	2001:db8:1:2::/64
Customer 4 (link one)	2001:db8:1:3::/64
Customer 4 (link two)	2001:db8:1:4::/64
Customer 5	2001:db8:1:5::/64
Customer 6	2001:db8:1:6::/64
etc	

Note1: PtP links are numbered out of 2001:db8:1::/48

Note2: PtP links have /64 reserved but are addressed as /127s

Example: Allocations from the /32

Master allocation documentation would look like this:

Category	Purpose
Single /64	Loopbacks
Single /60	NOC
Single /48	Backbone Point to Point links (/64 each)
Single /48	Customer Point to Point links (/64 each)
Single /40	65536 Broadband Customers in Region 1 (/56 each)
Single /40	256 Enterprise Customers in Region 1 (/48 each)
Single /40	65536 Broadband Customers in Region 2 (/56 each)
Single /40	256 Enterprise Customers in Region 2 (/48 each)
Etc	

Example: Allocations from the /32

Detailed documentation:

Address Blocks	Purpose
2001:db8:0::/48	Infrastructure (Loops, NOC, PtP)
2001:db8:1::/48	Customer Point to Point Links
2001:db8: <mark>0</mark> 110::/48	Customer One in Region 1
2001:db8: <mark>0</mark> 111::/48	Customer Two in Region 1
2001:db8: <mark>0</mark> 112::/48	Customer Three in Region 1
2001:db8:1100::/40	Broadband Pool 1 in Region 1
2001:db8:1200::/40	Broadband Pool 2 in Region 1
2001:db8: <mark>8</mark> 110::/48	Customer One in Region 2
2001:db8: <mark>8</mark> 111::/48	Customer Two in Region 2
2001:db8:9100::/40	Broadband Pool 1 in Region 2
2001:db8:9200::/40	Broadband Pool 2 in Region 2

Summary

■ First /48 for infrastructure

- Out of that, first /64 for Loopbacks
- PoP structure within IPv6 addressing is very possible
 - Greater flexibility than with IPv4
 - Possible to come up with a simple memorable scheme
- Documentation vitally important!

Presentation Recap

How it worked with IPv4
 Getting IPv6 address space
 Constructing a scalable IPv6 address plan
 IPv6 addressing on LANs
 IPv6 address plan example

IPv6 Addressing

ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok