Figure 1:

# LAB: RPKI

Part-1: Installing RPKI Validator

« # super user command.
« $ normal user command.

« Username apnic and password training.
VM Details

[groupOl.apnictraining.net] [192.168.30.1]
[group02.apnictraining.net] [192.168.30.2]
[grouplO.apnictraining.net] [192.168.30.10]
[groupll.apnictraining.net] [192.168.30.11]

[group20.apnictraining.net] [192.168.30.20]
[group2l.apnictraining.net] [192.168.30.21]

[group30.apnictraining.net] [192.168.30.30]

Preinstalled packages

To save time, the following essential packages have been preinstalled on the containers:

e curl
e wget
¢ GCC (GNU C toolchain)

e rsync

Lab Setup
For this lab, we will use OctoRPKI from Cloudflare as the relying party or the RPKI validator.

1. Login to the server (SSH using the username and password given above), where X is your group
number:

ssh apnic@192.168.30.X
2. Update the repository:

sudo apt update && sudo apt upgrade
3. Download the validator:

wget https://github.com/cloudflare/cfrpki/releases/download/vl.1.4/octorpki 1.1.4 :
dpkg -1 octorpki 1.1.4 amde64.deb


https://github.com/RIPE-NCC/cfrpki

4. Download the standard TALs. Note that by downloading ARIN’s TAL, you agree to be bound by
ARIN’s Relying Party Agreement (RPA):

mkdir tals

cd tals

wget https://raw.
wget https://raw.
wget https://raw.
wget https://raw.
wget https://www.
cd

5. Run the validator:

githubusercontent.
githubusercontent.
githubusercontent.
githubusercontent.

com/cloudflare/cfrpki/master/cmd/octorpki/tals/:
com/cloudflare/cfrpki/master/cmd/octorpki/tals/:
com/cloudflare/cfrpki/master/cmd/octorpki/tals/
com/cloudflare/cfrpki/master/cmd/octorpki/tals/

arin.net/resources/manage/rpki/arin-rfc7730.tal -0 arin.tal

nohup octorpki -output.sign=false > out 2> err &

6. Use the following command to retrieve the validated ROA payloads (produces a list of ASNs and
prefixes). If this command produces the string “File not ready yet”, then the validator is still work-
ing through the initial synchronisation process, which generally takes a few minutes. By default,
the server will resynchronise its state every 20 minutes.

curl localhost:80

80/output.json

NOTE: Now the validator is ready to feed the validated cache to an rpki-rtr server, which
in turn handles requests from BGP-speaking routers through the RTR (RPKI-to-Router)

protocol.

Part-2: RTR session

Validator side

GoRTR is Cloudflare’s rpki-rtr server component.

1. Download the rpki-rtr server:

wget https://github.com/cloudflare/gortr/releases/download/0.11.4/gortr 0.11.4 amd

dpkg -1 gortr 0.1

1.4 amd64.deb

2. Run the server, listening for rpki-rtr requests on port 8282, where X is your group number:

nohup gortr -bind=192.168.30.X:8282 -metrics.addr=:8081 -verify=false -cache=http:,

(Unchanged from

Router Side

Topology

this point.)

The topology below has 8 routers (R13, R14, ..

AS135540).

Address plan & ROA table

images/addr_plan.png

.R20), each with a unique ASN (AS135533 -

Figure 2:


https://www.arin.net/resources/manage/rpki/rpa.pdf
https://github.com/cloudflare/gortr
images/addr_plan.png

Router AS#

fao/1 (to eBGP peers)

e1/1 (to Validator)

ROA/route

Ri3 135533 172.16.0.1/30 192.168.30.13/24 61.45.248.0/24
Ri14 135534 172.16.0.2/30 192.168.30.14/24 61.45.249.0/24
Ri15 135535 172.16.0.5/30 192.168.30.15/24 61.45.250.0/24
R16 135536 172.16.0.6/30 192.168.30.16/24 61.45.251.0/24
R17 135537 172.16.0.9/30 192.168.30.17/24 61.45.252.0/24
R18 135538 172.16.0.10/30 192.168.30.18/24 61.45.253.0/24
R19 135539 172.16.0.13/30 192.168.30.19/24 61.45.254.0/24
R20 135540 172.16.0.14/30 192.168.30.20/24 61.45.255.0/24
Lab Notes

« For this lab, the RPKI Validator (Routinator) has been installed and configured by the instructor
as shown in the topology. The validator’s IP address is 192.168.30.240

» To simplify the configuration, the routers will establish eBGP session in pairs as shown below:

R13<-->R14
R15<-->R16
R17<-->R18
R19<-->R20

» Each router also has a connection to the RPKI validator to allow RTR (rpki-to-router) sessions.

« ROAs have already been created for each of the prefixes with corresponding origin AS numbers
(As135533 - AS135540) as shown in the table above.

Lab Exercise

1. Telnet to your group’s router as shown below:

telnet 192.
telnet 192.
telnet 192.
telnet 192.
telnet 192.
telnet 192.
telnet 192.
telnet 192.

168
168
168
168
168
168
168
168

.30
.30
.30
.30
.30
.30
.30
.30

.254
.254
.254
.254
.254
.254
.254
.254

2013
2014
2015
2016
2017
2018
2019
2020

[R13]
[R14]
[R15]
[R16]
[R17]
[R18]
[R19]
[R20]

2. If you see the following message during router bootup, enter no:

Would you like to enter the initial configuration dialog? [yes/no]:

3. You also might see the following service configuration messages when the I0S boots:

$Error opening tftp://192.
$Error opening tftp://192.
$Error opening tftp://192.
$Error opening tftp://192.

168.30
168.30
168.30
168.30

.254/network-confg
.254/cisconet.cfg
.254/router-confg
.254/ciscortr.cfg

(Timed out)
(Timed out)
(Timed out)
(Timed out)

« Please disable this inbuilt feature and save the config to prevent it from happening during the
next boot up:

no service config

do wr



10.

11.

NOTE: If you need to reload your router, DO NOT issue the reload command (please
ask the instructor)!

. Configure the host name and the interface to the validator (example for R13 below). Refer the

address plan table:

hostname R13

no logging console

|

interface ethernetl/1

description link to RPKI-Validator

ip address 192.168.30.13 255.255.255.0
no shutdown

. Verify connectivity between the router and the Validator

ping 192.168.30.240

. Configure the interface connecting to your eBGP peer (example for R13 below). Refer the address

plan table:

interface fal0/1

description link to R14

ip address 172.16.0.1 255.255.255.252
no shutdown

. Verify connectivity to your eBGP peer (talk to your neighbor if there is no reachability). Example

for R19 to check its physical connection to R20:

ping 172.16.0.14

. Configure eBGP with your neighbor (make sure its the correct neighbor). Example below for R13’s

eBGP session with Ri4:

router bgp 135533

neighbor 172.16.0.2 remote-as 135534
|

address-family ipv4 unicast
neighbor 172.16.0.2 activate

Make sure the eBGP session is up with your neighbor

sh bgp ipv4 unicast summary
« Note: You will not see any prefixes received from your neighbor yet.

Announce the correct prefix (based on the address plan table above) to your neighbor. Example
below is for R15:

ip route 61.45.250.0 255.255.255.0 null O
|

router bgp 135535

address-family ipv4 unicast

network 61.45.250.0 mask 255.255.255.0

Check/Verify routes learned from your neighbor. Example, for R19 to verify received routes from
its neighbor R20:



sh bgp ipv4 unicast neighbors 172.16.0.14 routes
12. Verify the BGP table:
sh bgp ipv4 unicast
13. Verify the routing table for BGP learned routes
sh ip route bgp
14. Setup RTR (rpki-to-router) session with the RPKI validator. Example for R13:

router bgp 135533
bgp rpki server tcp 192.168.30.240 port 3323 refresh 900

NOTE: Since the router will now pull the validated ROA cache using the RTR protocol from the
Validator, it might take a while.

15. Verify the RTR session with the Validator
sh ip bgp rpki servers
OR

sh bgp ipv4 unicast rpki servers
+ The output should look like something below:

BGP SOVC neighbor is 192.168.30.240/3323 connected to port 3323
Flags 192, Refresh time is 900, Serial number is 0, Session ID is 15578
InQ has 0 messages, OutQ has 0 messages, formatted msg 1
Session IO flags 3, Session flags 4000
Neighbor Statistics:

Prefixes 39736

Connection attempts: 1

Connection failures: O

Errors sent: O

Errors received: 0
Connection state is ESTAB, I/O status: 1, unread input bytes: 0

16. Look at all the valid ROAs learned from the Validator

sh bgp ipv4 unicast rpki table
« Should output a list of ROAs (origin-AS, max-length) like below:

65373 BGP sovc network entries using 5752824 bytes of memory
69579 BGP sovc record entries using 1391580 bytes of memory

Network Maxlen Origin-AS Source Neighbor

1.0.0.0/24 24 13335 0 192.168.30.240/3323
1.1.1.0/24 24 13335 0 192.168.30.240/3323
1.9.0.0/16 24 4788 0 192.168.30.240/3323
1.9.12.0/24 24 65037 0 192.168.30.240/3323
1.9.21.0/24 24 24514 0 192.168.30.240/3323
1.9.23.0/24 24 65120 0 192.168.30.240/3323
1.9.31.0/24 24 65077 0 192.168.30.240/3323
1.9.65.0/24 24 24514 0 192.168.30.240/3323
1.34.0.0/15 24 3462 0 192.168.30.240/3323
1.36.0.0/19 19 4760 0 192.168.30.240/3323



17. Now check the BGP table again to see how the routes learned from your neighbors are tagged with
the RPKI validation states of Valid, Invalid or Not Found:

show bgp ipv4 unicast

« Since we have created the ROAs corresponding to the prefixes used in this lab, you should see
all of them tagged as valid (V). Example below for R14:

Figure 3:

« Also verify the routing table (you should see the valid routes in the routing table)

sh ip route bgp
18. Let us now try to announce some Invalid routes (or hijack someone’s routes).

» Go ahead and announce routes (refer the ip address plan) that belong to other groups. In the
example below, R13 in AS135533 is announcing R20’s prefix (AS135540):

ip route 61.45.255.0 255.255.255.0 null O
|
router bgp 135533
address-family ipv4 unicast
network 61.45.255.0 mask 255.255.255.0

Verify the BGP table on R14 (your eBGP neighbor).
sh bgp ipv4 unicast

» You will see that the route 61.45.255. 0 learned from its neighbor R13 has been tagged as
Invalid (I). Discuss within your group why it is Invalid?

Figure 4:

« Now, look at the routing table:

sh ip route bgp
OR

sh ip route

— You will notice that the Invalid route has NOT be been inserted in the routing table.

Figure 5:

— NOTE: The default Cisco I0S behaviour is to not include invalid routes for
best path selection!

— Ifyou dont want to drop invalids with Cisco I0S, you need to explicitly tell BGP to include
invalids for best path selection (under respective AFs) as shown below for R14:

router bgp 135534
address-family ipv4 unicast
bgp bestpath prefix-validate allow-invalid

* Verify the routing table to see how BGP behaves with the above command:
sh ip route bgp



* The Invalid route now appears in the routing table of R14 as shown below:

Figure 6:

19. Letushave alook at Not Found routes - routes for which there are no correspnding ROAs (neither
valid or invalid, perhaps not created yet). These make up more than 86% of the global routing table,
which indicates many people haven’t created ROAs for their prefixes!

+ Let us announce some special use prefixes (RFC5735), for which there should not be any
existing ROAs. Example below for R13 announcing documentation prefix 203.0.113.0/24

ip route 203.0.113.0 255.255.255.0 null O
!

router bgp 135533
address-family ipv4 unicast
network 203.0.113.0 mask 255.255.255.0

« Alook at R14’s BGP table:

Figure 7:

« And R14’s routing table shows the Not Found routes are included in the best path selection:

Figure 8:

20. If we do not want to drop Invalids, we can follow best practice recommendations in RFC7115 to
prefer Valids over Not Found or Invalids, and prefer Not Found over Invalid origins.

« Define a routing policy that prefers Valids > Not Founds > Invalids

route-map ROUTE-VALIDATION permit 10
match rpki valid

set local-preference 200
|

route-map ROUTE-VALIDATION permit 20
match rpki not-found

set local-preference 100
|

route-map ROUTE-VALIDATION permit 30
match rpki invalid
set local-preference 50

» Apply the route-map to inbound updates from your neighbor. Example below for R20:

router bgp 135540
address-family ipv4 unicast
neighbor 172.16.0.13 route-map ROUTE-VALIDATION in

 Refresh the routes learned from your neighbor (telling them to resend their routes without
tearing down the BGP session). Example below for R14:

clear bgp ipv4 unicast 172.16.0.1 soft in

» Now verify the BGP table (example R14 below) to see the policy in action: sh bgp ipv4
unicast

Figure 9:

End of Lab


https://rpki-monitor.antd.nist.gov/

	Part-1: Installing RPKI Validator
	Part-2: RTR session
	Validator side

	(Unchanged from this point.)
	Router Side
	Topology
	Address plan & ROA table
	Lab Notes
	Lab Exercise



