
super user command.
$ normal user command.

Username apnic and password training .

VM Details

[group01.apnictraining.net] [192.168.30.1]
[group02.apnictraining.net] [192.168.30.2]
......
[group10.apnictraining.net] [192.168.30.10]
[group11.apnictraining.net] [192.168.30.11]
......
[group20.apnictraining.net] [192.168.30.20]
[group21.apnictraining.net] [192.168.30.21]
......
[group30.apnictraining.net] [192.168.30.30]

Preinstalled packages

To save time, the following essential packages have been preinstalled on the containers:

curl

wget

GCC (GNU C toolchain)

rsync

Lab Setup

For this lab, we will use Routinator from NLnetLabs as the relying party or the RPKI validator.

1. Login to the server (SSH using the username and password given above), where X is your group
number:

ssh apnic@192.168.30.X

LAB: RPKI

Part-1: Installing RPKI Validator

https://github.com/NLnetLabs/routinator

2. Update the repository

sudo apt update && sudo apt upgrade

Note: Since Routinator is written in rust , we will need to first install rust using rustup

(which is a rust installer and version management tool) from the official release channels.

3. Run the following curl command which will download a script that downloads rustup and
installs rust

curl https://sh.rustup.rs -sSf | sh

-f: fail silently (HTTP)
-sS: show errors if it fails

4. Follow the onscreen instructions to install rust:

5. Make sure to set the PATH environment variable as shown in the onscreen instruction:

source $HOME/.cargo/env

Note: Before installing Routinator, make sure GCC toolchain is installed:

gcc --version

6. Now we will use cargo (the rust package manager) to install Routinator.

cargo install routinator

7. Before running Routinator for the first time, we must prepare its working environment (directory for the
RPKI cache as well as Trust Anchor Locator - TAL).

routinator init

Note: Since this is the first time we are using Routinator, it will complain that ARIN’s TAL is missing as
shown below:

8. If we agree to Arin's relying party agreement, reissue the command with the --accept-arin-rpa

option as shown below:

routinator init --accept-arin-rpa

Note: This will create the rpki cache repository directory as well as a download the TALs (from the five
RIRs) and save it in the relevant directory.

9. Do a test run with the following command to pull and list the validated ROA payloads (produces a list of
ASNs and prefixes). Since it will rsync the whole RPKI repo to the local machine
(/home/apnic/.rpki-cache/repository/), it will take a while, so dont worry:

routinator -v vrps

Note: Now you should have all the ROAs from the global RPKI repository on your local validator as a
validated cache:

rsyncing from rsync://repository.lacnic.net/rpki/.
rsyncing from rsync://rpki.afrinic.net/repository/.
rsyncing from rsync://rpki.apnic.net/repository/.
rsyncing from rsync://rpki.ripe.net/ta/.
rsync://rpki.ripe.net/ta: The RIPE NCC Certification Repository is subject to
Terms and Conditions
rsync://rpki.ripe.net/ta: See http://www.ripe.net/lir-services/ncc/legal/certi
fication/repository-tc
rsync://rpki.ripe.net/ta:
Found valid trust anchor rsync://rpki.ripe.net/ta/ripe-ncc-ta.cer. Processing.
rsyncing from rsync://rpki.ripe.net/repository/.
Found valid trust anchor rsync://rpki.afrinic.net/repository/AfriNIC.cer. Proc
essing.
rsyncing from rsync://rpki.arin.net/repository/.
Found valid trust anchor rsync://rpki.arin.net/repository/arin-rpki-ta.cer. Pr
ocessing.
Found valid trust anchor rsync://rpki.apnic.net/repository/apnic-rpki-root-ian
a-origin.cer. Processing.
rsyncing from rsync://rpki.apnic.net/member_repository/.
Found valid trust anchor rsync://repository.lacnic.net/rpki/lacnic/rta-lacnic-
rpki.cer. Processing.
rsync://rpki.ripe.net/repository: The RIPE NCC Certification Repository is sub
ject to Terms and Conditions
rsync://rpki.ripe.net/repository: See http://www.ripe.net/lir-services/ncc/leg
al/certification/repository-tc
rsync://rpki.ripe.net/repository:
rsyncing from rsync://rpkica.twnic.tw/rpki/.
rsyncing from rsync://rpki-repository.nic.ad.jp/ap/.
rsyncing from rsync://rpki.cnnic.cn/rpki/.
Summary:
afrinic: 338 valid ROAs, 459 VRPs.
lacnic: 2435 valid ROAs, 7042 VRPs.
apnic: 3186 valid ROAs, 21934 VRPs.
ripe: 10780 valid ROAs, 56907 VRPs.
arin: 4964 valid ROAs, 6621 VRPs.
ASN,IP Prefix,Max Length,Trust Anchor
AS43289,2a03:f80:373::/48,48,ripe
AS14464,131.109.128.0/17,17,arin
AS17806,114.130.5.0/24,24,apnic
AS59587,151.232.192.0/21,21,ripe
AS13335,172.68.30.0/24,24,arin
AS6147,190.40.0.0/14,24,lacnic
...

NOTE: Now your validator is ready to feed the validated cache to BGP speaking routers through the
RTR (RPKI-to-Router) protocol.

Routinator can act as an RTR server, to allow RPKI enabled routers to connect to it and fetch the validated
cache (ROA cache).

IANA has specified a standard port 323 for RTR, which would require running Routinator as a root.
To run Routinator as a RTR server listening on 192.168.30.X (where X is your group number) and
port 3323 :

routinator server --rtr 192.168.30.X:3323 --refresh=900

If you dont specify the refresh time, by default the local repo will be updated and re-validated
every 1 hour (as per RFC8210). The example above uses a 15 minutes (900secs) refresh
time

Note: If you have IPv6 address configured on routinator, you can listen on both:

routinator server --rtr 192.168.30.X:3323 --rtr [2001:0DB8::X]:3323 --refresh=
900

The topology below has 8 routers (R13, R14, ...R20), each with a unique ASN
(AS135533 - AS135540).

Part-2: RTR session

Validator side

Router Side

Topology

Router AS# fa0/1 (to eBGP peers) e1/1 (to Validator) ROA/route

R13 135533 172.16.0.1/30 192.168.30.13/24 61.45.248.0/24

R14 135534 172.16.0.2/30 192.168.30.14/24 61.45.249.0/24

R15 135535 172.16.0.5/30 192.168.30.15/24 61.45.250.0/24

R16 135536 172.16.0.6/30 192.168.30.16/24 61.45.251.0/24

R17 135537 172.16.0.9/30 192.168.30.17/24 61.45.252.0/24

R18 135538 172.16.0.10/30 192.168.30.18/24 61.45.253.0/24

R19 135539 172.16.0.13/30 192.168.30.19/24 61.45.254.0/24

R20 135540 172.16.0.14/30 192.168.30.20/24 61.45.255.0/24

For this lab, the RPKI Validator (Routinator) has been installed and configured by the instructor as
shown in the topology. The validator's IP address is 192.168.30.240

To simplify the configuration, the routers will establish eBGP session in pairs as shown below:

R13<-->R14
R15<-->R16
R17<-->R18
R19<-->R20

Address plan & ROA table

Lab Notes

Each router also has a connection to the RPKI validator to allow RTR (rpki-to-router) sessions.

ROAs have already been created for each of the prefixes with corresponding origin AS numbers
(AS135533 - AS135540) as shown in the table above.

1. Telnet to your group's router as shown below:

telnet 192.168.30.254 2013 [R13]
telnet 192.168.30.254 2014 [R14]
telnet 192.168.30.254 2015 [R15]
telnet 192.168.30.254 2016 [R16]
telnet 192.168.30.254 2017 [R17]
telnet 192.168.30.254 2018 [R18]
telnet 192.168.30.254 2019 [R19]
telnet 192.168.30.254 2020 [R20]

2. If you see the following message during router bootup, enter no :

Would you like to enter the initial configuration dialog? [yes/no]:

3. You also might see the following service configuration messages when the IOS boots:

%Error opening tftp://192.168.30.254/network-confg (Timed out)
%Error opening tftp://192.168.30.254/cisconet.cfg (Timed out)
%Error opening tftp://192.168.30.254/router-confg (Timed out)
%Error opening tftp://192.168.30.254/ciscortr.cfg (Timed out)

Please disable this inbuilt feature and save the config to prevent it from happening during the next
boot up:

no service config
do wr

NOTE: If you need to reload your router, DO NOT issue the reload command (please ask the
instructor)!

4. Configure the host name and the interface to the validator (example for R13 below). Refer the address
plan table:

Lab Exercise

hostname R13
no logging console
!
interface ethernet1/1
 description link to RPKI-Validator
 ip address 192.168.30.13 255.255.255.0
 no shutdown

5. Verify connectivity between the router and the Validator

ping 192.168.30.240

6. Configure the interface connecting to your eBGP peer (example for R13 below). Refer the address
plan table:

interface fa0/1
 description link to R14
 ip address 172.16.0.1 255.255.255.252
 no shutdown

7. Verify connectivity to your eBGP peer (talk to your neighbor if there is no reachability). Example for
R19 to check its physical connection to R20:

ping 172.16.0.14

8. Configure eBGP with your neighbor (make sure its the correct neighbor). Example below for R13's
eBGP session with R14:

router bgp 135533
 neighbor 172.16.0.2 remote-as 135534
 !
 address-family ipv4 unicast
 neighbor 172.16.0.2 activate

9. Make sure the eBGP session is up with your neighbor

sh bgp ipv4 unicast summary

Note: You will not see any prefixes received from your neighbor yet.

10. Announce the correct prefix (based on the address plan table above) to your neighbor. Example below
is for R15:

ip route 61.45.250.0 255.255.255.0 null 0
!
router bgp 135535
 address-family ipv4 unicast
 network 61.45.250.0 mask 255.255.255.0

11. Check/Verify routes learned from your neighbor. Example, for R19 to verify received routes from its
neighbor R20:

sh bgp ipv4 unicast neighbors 172.16.0.14 routes

12. Verify the BGP table:

sh bgp ipv4 unicast

13. Verify the routing table for BGP learned routes

sh ip route bgp

14. Setup RTR (rpki-to-router) session with the RPKI validator. Example for R13:

router bgp 135533
 bgp rpki server tcp 192.168.30.240 port 3323 refresh 900

NOTE: Since the router will now pull the validated ROA cache using the RTR protocol from the
Validator, it might take a while.

15. Verify the RTR session with the Validator

sh ip bgp rpki servers

OR

sh bgp ipv4 unicast rpki servers

The output should look like something below:

BGP SOVC neighbor is 192.168.30.240/3323 connected to port 3323
Flags 192, Refresh time is 900, Serial number is 0, Session ID is 15578
InQ has 0 messages, OutQ has 0 messages, formatted msg 1
Session IO flags 3, Session flags 4000
Neighbor Statistics:
 Prefixes 39736
 Connection attempts: 1
 Connection failures: 0
 Errors sent: 0
 Errors received: 0
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
……

16. Look at all the valid ROAs learned from the Validator

sh bgp ipv4 unicast rpki table

Should output a list of ROAs (origin-AS, max-length) like below:

65373 BGP sovc network entries using 5752824 bytes of memory
69579 BGP sovc record entries using 1391580 bytes of memory

Network Maxlen Origin-AS Source Neighbor
1.0.0.0/24 24 13335 0 192.168.30.240/3323
1.1.1.0/24 24 13335 0 192.168.30.240/3323
1.9.0.0/16 24 4788 0 192.168.30.240/3323
1.9.12.0/24 24 65037 0 192.168.30.240/3323
1.9.21.0/24 24 24514 0 192.168.30.240/3323
1.9.23.0/24 24 65120 0 192.168.30.240/3323
1.9.31.0/24 24 65077 0 192.168.30.240/3323
1.9.65.0/24 24 24514 0 192.168.30.240/3323
1.34.0.0/15 24 3462 0 192.168.30.240/3323
1.36.0.0/19 19 4760 0 192.168.30.240/3323

17. Now check the BGP table again to see how the routes learned from your neighbors are tagged with
the RPKI validation states of Valid, Invalid or Not Found:

show bgp ipv4 unicast

Since we have created the ROAs corresponding to the prefixes used in this lab, you should see
all of them tagged as valid (V). Example below for R14:

Also verify the routing table (you should see the valid routes in the routing table)

sh ip route bgp

18. Let us now try to announce some Invalid routes (or hijack someone's routes).

Go ahead and announce routes (refer the ip address plan) that belong to other groups. In the
example below, R13 in AS135533 is announcing R20's prefix (AS135540):

ip route 61.45.255.0 255.255.255.0 null 0
!
router bgp 135533
 address-family ipv4 unicast
 network 61.45.255.0 mask 255.255.255.0

Verify the BGP table on R14 (your eBGP neighbor).

sh bgp ipv4 unicast

You will see that the route 61.45.255.0 learned from its neighbor R13 has been tagged as
Invalid (I). Discuss within your group why it is Invalid?

Now, look at the routing table:

sh ip route bgp

OR

sh ip route

You will notice that the Invalid route has NOT be been inserted in the routing table.

NOTE: The default Cisco IOS behaviour is to not include invalid routes for best path
selection!

If you dont want to drop invalids with Cisco IOS, you need to explicitly tell BGP to include
invalids for best path selection (under respective AFs) as shown below for R14:

router bgp 135534
 address-family ipv4 unicast
 bgp bestpath prefix-validate allow-invalid

Verify the routing table to see how BGP behaves with the above command:

sh ip route bgp

The Invalid route now appears in the routing table of R14 as shown below:

19. Let us have a look at Not Found routes - routes for which there are no correspnding ROAs (neither
valid or invalid, perhaps not created yet). These make up more than 86% of the global routing table,
which indicates many people haven't created ROAs for their prefixes!

Let us announce some special use prefixes (RFC5735), for which there should not be any
existing ROAs. Example below for R13 announcing documentation prefix 203.0.113.0/24

ip route 203.0.113.0 255.255.255.0 null 0
!
router bgp 135533
 address-family ipv4 unicast
 network 203.0.113.0 mask 255.255.255.0

A look at R14's BGP table:

https://rpki-monitor.antd.nist.gov/

And R14's routing table shows the Not Found routes are included in the best path selection:

20. If we do not want to drop Invalids, we can follow best practice recommendations in RFC7115 to prefer
Valids over Not Found or Invalids, and prefer Not Found over Invalid origins.

Define a routing policy that prefers Valids > Not Founds > Invalids

route-map ROUTE-VALIDATION permit 10
 match rpki valid
 set local-preference 200
!
route-map ROUTE-VALIDATION permit 20
 match rpki not-found
 set local-preference 100
!
route-map ROUTE-VALIDATION permit 30
 match rpki invalid
 set local-preference 50

Apply the route-map to inbound updates from your neighbor. Example below for R20:

router bgp 135540
 address-family ipv4 unicast
 neighbor 172.16.0.13 route-map ROUTE-VALIDATION in

Refresh the routes learned from your neighbor (telling them to resend their routes without tearing
down the BGP session). Example below for R14:

clear bgp ipv4 unicast 172.16.0.1 soft in

Now verify the BGP table (example R14 below) to see the policy in action:
sh bgp ipv4 unicast

End of Lab

