IPv6: Where are we now?

Tashi Phuntsho (Senior Network Janitor)

tashi@apnic.net

IPv6 adoption stats - Google

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Native: 19.55% 6to4/Teredo: 0.04% Total IPv6: 19.59% | Apr 6, 2018

https://www.google.com/intl/en/ipv6/statistics.html

Top 1000 websites - IPv6

Percentage of Alexa Top 1000 websites currently reachable over IPv6

http://www.worldipv6launch.org/measurements/

End-user readiness - APNIC Labs

https://stats.labs.apnic.net/ipv6/

How we measure

- Uses advertisement to load measurement script (HTML5/flash) on user's browser
 - Over 2M measurements/day!!
- Script fetches three invisible pixels
 - IPv4 only URL
 - IPv6 only URL
 - Dual-stack URL
- If:
 - Fetches IPv6 URLs (native/dual-stack) over IPv6, device is deemed IPv6 capable
 - Fetches the dual-stack URL using IPv6, its deemed to prefer IPv6 (HE bias – RFC6555?)
 - Only Chrome 300ms (Firefox and Opera parallel; OS X and iOS 25ms)

IPv6 table - Oceania

СС	Country	IPv6 Capable	IPv6 Preferred	Samples
NZ	New Zealand, Australia and New Zealand, Oceania	20.09%	17.10%	921,767
AU	Australia, Australia and New Zealand, Oceania	16.83%	15.91%	3,793,498
SB	Solomon Islands, Melanesia, Oceania	0.08%	0.01%	9,951
VU	Vanuatu, Melanesia, Oceania	0.03%	0.03%	6,053
PG	Papua New Guinea, Melanesia, Oceania	0.03%	0.00%	32,698
NC	New Caledonia, Melanesia, Oceania	0.01%	0.01%	20,373
AS	American Samoa, Polynesia, Oceania	0.01%	0.00%	10,165
MH	Marshall Islands, Micronesia, Oceania	0.01%	0.01%	14,152
FM	Micronesia (Federated States of), Micronesia, Oceania	0.01%	0.01%	17,919
PF	French Polynesia, Polynesia, Oceania	0.00%	0.00%	67,607
GU	Guam, Micronesia, Oceania	0.00%	0.00%	165,033
FJ	Fiji, Melanesia, Oceania	0.00%	0.00%	148,373
MP	Northern Mariana Islands, Micronesia, Oceania	0.00%	0.00%	16,272
NR	Nauru, Micronesia, Oceania	0.00%	0.00%	446
KI	Kiribati, Micronesia, Oceania	0.00%	0.00%	5,665
NU	Niue, Polynesia, Oceania	0.00%	0.00%	216
NF	Norfolk Island, Australia and New Zealand, Oceania	0.00%	0.00%	682
то	Tonga, Polynesia, Oceania	0.00%	0.00%	4,494
СК	Cook Islands, Polynesia, Oceania	0.00%	0.00%	2,587
WS	Samoa, Polynesia, Oceania	0.00%	0.00%	1,493
PW	Palau, Micronesia, Oceania	0.00%	0.00%	6,082
TV	Tuvalu, Polynesia, Oceania	0.00%	0.00%	259
WF	Wallis and Futuna Islands, Polynesia, Oceania	0.00%	0.00%	779
тк	Tokelau, Polynesia, Oceania	0	0	1

https://stats.labs.apnic.net/ipv6/

IPv6 capability – New Caledonia

ASN	AS Name	IPv6 Capable	IPv6 Preferred	Samples
AS56089	OFFRATEL-AS-AP OFFRATEL	0.01%	0.01%	6,692
AS17480	CANL CANL	0.03%	0.03%	3,879
AS18200	OPT-NC-AS-AP Office des Postes et Telecommunications New-Caledonia	0.00%	0.00%	3,662
AS56055	MLS-NC Micro Logic Systems	0.00%	0.00%	3,300
AS45345	NAUTILE-NC-AS-AP Nautile	0.04%	0.04%	2,417
AS45461	TELENET-AS-AP TeleNet	0.00%	0.00%	423

IPv6 interconnections - NC

https://labs.apnic.net/vizas/index.html#NC

• Is IPv6 inferior to IPv4 in terms of service performance?

- Two sessions between the same endpoints
- Same e2e transport protocol
- Same applications at each end
- Different IP protocol used by the two sessions

Enough data collected to analyze IPv6 performance
 – APNIC Labs

• Is IPv6 as robust as IPv4?

- Do all TCP connection attempts succeed?
 - Connection failure = no ACK for an acknowledged SYN
- IPv4 connection failure sits at 0.2%
- IPv6 connection failure sits at 1.6% (8 times higher!)
 - PMTUD (ICMPv6 filters)?

- Enough data collected to analyze IPv6 performance
 APNIC Labs
- Is IPv6 as fast as IPv4? (IPv6 unicast)
 - Comparison of RTT (not implicit RTT)
 - Time since SYN till ACK
 - factors out any congestion issues
 - IPv6 is faster about half of the time
 - **45**ms faster (world average)
 - NAT?
 - IPv4 and IPv6 using different paths (different peering policies for IPv4 and IPv6)?
 - IPv6 as fast as IPv4

Routing path & performance

https://labs.apnic.net/?p=850

- Some good use cases
- LinkedIn Senior Director of Infrastructure Engineering, Zaid Ali Kahn
 - @APNIC42 (September 2016)

• IPv6 at LinkedIn:

- For some select networks in Europe, LinkedIn is seeing up to 40% performance improvements over IPv6, and in the US, up to 10%
- TCP timeout on IPv4 over mobile carrier networks is as high as 4.6% and IPv6 timeouts are on a much lower side at 1.6%
 - CG-NAT configuration (TCP translation timeouts)?

https://blog.apnic.net/2016/05/13/linkedin-ipv6-measurements/

Industry trend: Who is in control?

http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

Industry trend: Who is in control?

- Mobile is driving the internet
- However, born and raised on NAT! – Still heavily based on CG-NAT (NAT44)
- The true driver for IPv6 adoption is mobile internet!

IPv6 in Mobile Networks: Technology

Carrier	Economy	Deployment
Reliance Jio	India	Dual stack in 2016
SK Telecom	Korea	464XLAT in 2014
Telstra	Australia	464XLAT since 2016
T-Mobile	USA	464XLAT in 2012
Verizon Wireless	USA	Dual stack in 2011

Dual-stack in mobile network

- Does not solve IPv4 (public) depletion issue
 - Still need to use CG-NAT to access IPv4-only sites
- But *effective*, and the only viable and scalable way forward
 - IPv6 native access to most of the major content providers
 - None of the scalability issues of v4 CG-NAT
 - And of course, *no DNSSEC* issues

IPv6 and Mobile devices

- Android: supports 464XLAT (4.4 KitKat)
- iOS: IPv6 supported over mobile interface since iOS
 9 (supported IPv6 on WiFi for a long time!)
 - All apps submitted to App Store must support IPv6 (only) since June 2016
 - <u>https://developer.apple.com/support/ipv6/</u>

IPv6 Tethering

- **RFC6653**:DHCPv6-PD for Mobile Networks
 - 3GPP Release10
- **RFC7278**: Extending IPv6 prefix (/64) from Mobile interface to LAN
 - "Flaky" support since Android 6.0 (Marshmallow)
 - Stop-gap until DHCPv6-PD

www.apnic.net/ipv6

Deploy IPv6

Deploying IPv6 can be a challenge but many organizations around the world have made the transition successfully. Here's some of the elements you'll need to consider for your organization's deployment of IPv6.

Thank You! END OF SESSION

