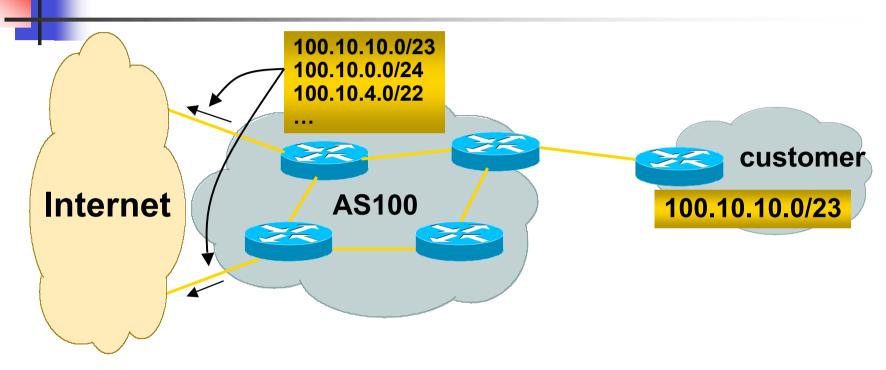
BGP Route Aggregation Best Practices

Philip Smith

SANOG 9 Colombo, Sri Lanka January 2007

Agenda

- What is Aggregation?
- RIPE-399 Aggregation Recommendations
- What is happening world wide?

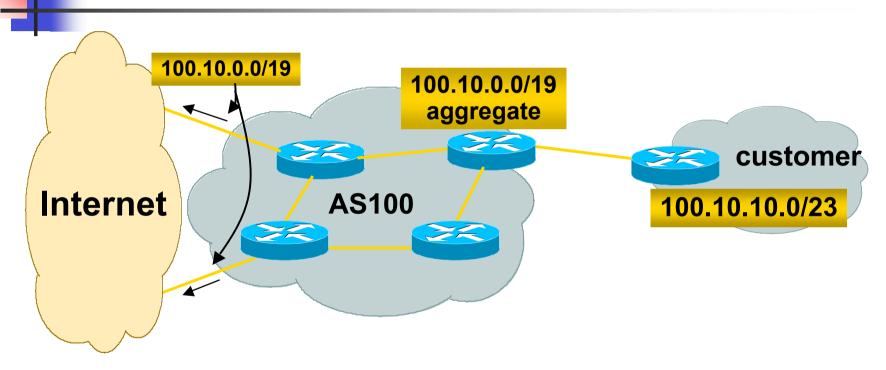

Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network
- Subprefixes of address block must NOT be announced to Internet unless aiding traffic engineering for multihoming
- Subprefixes of this aggregate will be present internally in the ISP network

Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- Registries publish their minimum allocation size
 - Anything from a /20 to a /22 depending on RIR
 - Different sizes for different address blocks
- No real reason to see anything longer than a /22 prefix in the Internet
 - BUT there are currently >110000 /24s!

Aggregation – Example 1


- Customer has /23 network assigned from AS100's /19 address block
- AS100 announces customers' individual networks to the Internet

Aggregation – Bad Example

- Customer link goes down
 - Their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- Their ISP doesn't aggregate its /19 network block
 - /23 network withdrawal announced to peers
 - starts rippling through the Internet
 - added load on all Internet backbone routers as network is removed from routing table

- Customer link returns
 - Their /23 network is now visible to their ISP
 - Their /23 network is readvertised to peers
 - Starts rippling through Internet
 - Load on Internet backbone routers as network is reinserted into routing table
 - Some ISP's suppress the flaps
 - Internet may take 10-20 min or longer to be visible
 - Where is the Quality of Service???

Aggregation – Example 2

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announced /19 aggregate to the Internet

Aggregation – Good Example

- Customer link goes down
 - their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- /19 aggregate is still being announced
 - no BGP hold down problems
 - no BGP propagation delays
 - no damping by other ISPs

- Customer link returns
 - Their /23 network is visible again
 - The /23 is re-injected into AS100's iBGP
 - The whole Internet becomes visible immediately
 - Customer has Quality of Service perception

- Good example is what everyone should do!
 - Adds to Internet stability
 - Reduces size of routing table
 - Reduces routing churn
 - Improves Internet QoS for everyone
- Bad example is what too many still do!
 - Why? Lack of knowledge?
 - Laziness?

The Internet Today (January 2007)

Current Internet Routing Table Statistics

BGP Routing Table Entries	207115
Prefixes after maximum aggregation	112059
Unique prefixes in Internet	100861
Prefixes smaller than registry alloc	105377
/24s announced	110473
only 5748 /24s are from 192.0.0.0/8	
ASes in use	24066

"The New Swamp"

- 'Swamp Space' is name used for areas of poor aggregation
 - The original swamp was 192.0.0.0/8 from the former class C block
 - Name given just after the deployment of CIDR
 - The new swamp is creeping across all parts of the Internet
 - Not just RIR space, but "legacy" space too

"The New Swamp" RIR Space – February 1999

RIR blocks contribute 49393 prefixes or 88% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks	Block	Networks
24/8	165	74/8	0	124/8	0	205/8	2584
41/8	0	<i>75</i> /8	0	125/8	0	206/8	3127
58/8	0	76/8	0	126/8	0	207/8	2723
59/8	0	80/8	0	188/8	0	208/8	2817
60/8	0	81/8	0	189/8	0	209/8	2574
61/8	3	82/8	0	190/8	0	210/8	617
62/8	87	83/8	0	192/8	6275	211/8	0
63/8	20	84/8	0	193/8	2390	212/8	717
64/8	0	<i>85/8</i>	0	194/8	2932	213/8	1
65/8	0	86/8	0	195/8	1338	216/8	943
66/8	0	87/8	0	196/8	513	217/8	0
67/8	0	88/8	0	198/8	4034	218/8	0
68/8	0	89/8	0	199/8	3495	219/8	0
69/8	0	90/8	0	200/8	1348	220/8	0
70/8	0	91/8	0	201/8	0	221/8	0
71/8	0	121/8	0	202/8	2276	222/8	0
72/8	0	122/8	0	203/8	3622		
73/8	0	123/8	0	204/8	3792		

"The New Swamp" RIR Space – February 2006

RIR blocks contribute 161287 prefixes or 88% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks	Block	Networks
24/8	3001	74/8	109	124/8	292	205/8	2934
41/8	41	75/8	2	125/8	682	206/8	3879
58/8	606	76/8	4	126/8	27	207/8	4385
59/8	628	80/8	1925	188/8	1	208/8	3239
60/8	468	81/8	1350	189/8	0	209/8	5611
61/8	2396	82/8	1158	190/8	39	210/8	3908
62/8	1860	83/8	1130	192/8	6927	211/8	2291
63/8	2837	84/8	971	193/8	5203	212/8	2920
64/8	5374	85/8	1426	194/8	4061	213/8	3071
65/8	3785	86/8	650	195/8	3519	216/8	6893
66/8	6292	87/8	629	196/8	1264	217/8	2590
67/8	1832	88/8	328	198/8	4908	218/8	1220
68/8	3069	89/8	113	199/8	4156	219/8	1003
69/8	3315	90/8	2	200/8	6757	220/8	1657
70/8	1597	91/8	2	201/8	1614	221/8	765
71/8	888	121/8	0	202/8	9759	222/8	914
72/8	1772	122/8	0	203/8	9527		
73/8	274	123/8	0	204/8	5474		

"The New Swamp" Summary

- RIR space shows creeping deaggregation
 - Today an RIR /8 block averages around 6000 prefixes once fully allocated
 - → Existing 74 /8s will eventually cause 444000 prefix announcements
- Food for thought:
 - Remaining 58 unallocated /8s and the 74 RIR /8s combined will cause:
 - 852000 prefixes with 6000 prefixes per /8 density
 - Plus 12% due to "non RIR space deaggregation"
 - → Routing Table size of 954240 prefixes

"The New Swamp" Summary

- Rest of address space is showing similar deaggregation too ⊗
- What are the reasons?
 - Main justification is traffic engineering
- Real reasons are:
 - Lack of knowledge
 - Laziness
 - Deliberate & knowing actions

BGP Report (bgp.potaroo.net)

- 199336 total announcements in October 2006
- 129795 prefixes
 - After aggregating including full AS PATH info
 - i.e. including each ASN's traffic engineering
 - 35% saving possible
- 109034 prefixes
 - After aggregating by Origin AS
 - i.e. ignoring each ASN's traffic engineering
 - 10% saving possible

- Traffic engineering causes 10% of the Internet Routing table
- Deliberate deaggregation causes 35% of the Internet Routing table

Efforts to improve aggregation

- The CIDR Report
 - Initiated and operated for many years by Tony Bates
 - Now combined with Geoff Huston's routing analysis
 - www.cidr-report.org
 - Results e-mailed on a weekly basis to most operations lists around the world
 - Lists the top 30 service providers who could do better at aggregating

The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse

Agenda

- What is Aggregation?
- RIPE-399 Aggregation Recommendations
- What is happening world wide?

- LINX started with aggregation policy for members
 - It failed "IXP interfering with members business practices"
 - Even though most members voted for policy!
- RIPE Routing Working Group work item from early 2006
 - Based on early LINX concept
 - Authored by Philip Smith, Mike Hughes (LINX CTO) and Rob Evans (UKERNA)

Route Aggregation Recommendations

- RIPE Document RIPE-399
 - http://www.ripe.net/ripe/docs/ripe-399.html
- Discusses:
 - History of aggregation
 - Causes of de-aggregation
 - Impacts on global routing system
 - Available Solutions
 - Recommendations for ISPs

History:

- Classful to classless migration
 - Clean-up efforts in 192/8
- CIDR Report
 - Started by Tony Bates to encourage adoption of CIDR & aggregation
 - Mostly ignored through late 90s
 - Now part of extensive BGP table analysis by Geoff Huston
- Introduction of Regional Internet Registry system and PA address space

Deaggregation: Claimed causes (1):

- Routing System Security
 - "Announcing /24s means that no one else can DOS the network"
- Reduction of DOS attacks & miscreant activities
 - "Announcing only address space in use as rest attracts 'noise"
- Commercial Reasons
 - "Mind your own business"

- Leakage of iBGP outside of local AS
 - eBGP is NOT iBGP how many ISPs know this?
- Traffic Engineering for Multihoming
 - Spraying out /24s hoping it will work
 - Rather than being sparing
- Legacy Assignments
 - "All those pre-RIR assignments are to blame"
 - In reality it is both RIR and legacy assignments

Impacts (1):

- Router memory
 - Shortens router life time as vendors underestimate memory growth requirements
 - Depreciation life-cycle shortened
 - Increased costs for ISP and customers
- Router processing power
 - Processors are underpowered as vendors underestimate CPU requirement
 - Depreciation life-cycle shortened
 - Increased costs for ISP and customers

Impacts (2):

- Routing System convergence
 - Larger routing table → slowed convergence
 - Can be improved by faster control plane processors — see earlier
- Network Performance & Stability
 - Slowed convergence → slowed recovery from failure
 - Slowed recovery → longer downtime
 - Longer downtime → unhappy customers

Solutions (1):

- CIDR Report
 - Global aggregation efforts
 - Running since 1994
- Routing Table Report
 - Per RIR region aggregation efforts
 - Running since 1999
- Filtering recommendations
 - Training, tutorials, Project Cymru,...
- "CIDR Police"

Solutions (2):

- BGP Features:
 - NO_EXPORT Community
 - NOPEER Community
 - RFC3765 but no one has implemented it
 - AS_PATHLIMIT attribute
 - Still working through IETF IDR Working Group
 - Provider Specific Communities
 - Some ISPs use them; most do not

Recommendations:

- Announcement of initial allocation as a single entity
- Subsequent allocations aggregated if they are contiguous and bit-wise aligned
- Prudent subdivision of aggregates for Multihoming
- Use BGP enhancements already discussed
- (Oh, and all this applies to IPv6 too)

Agenda

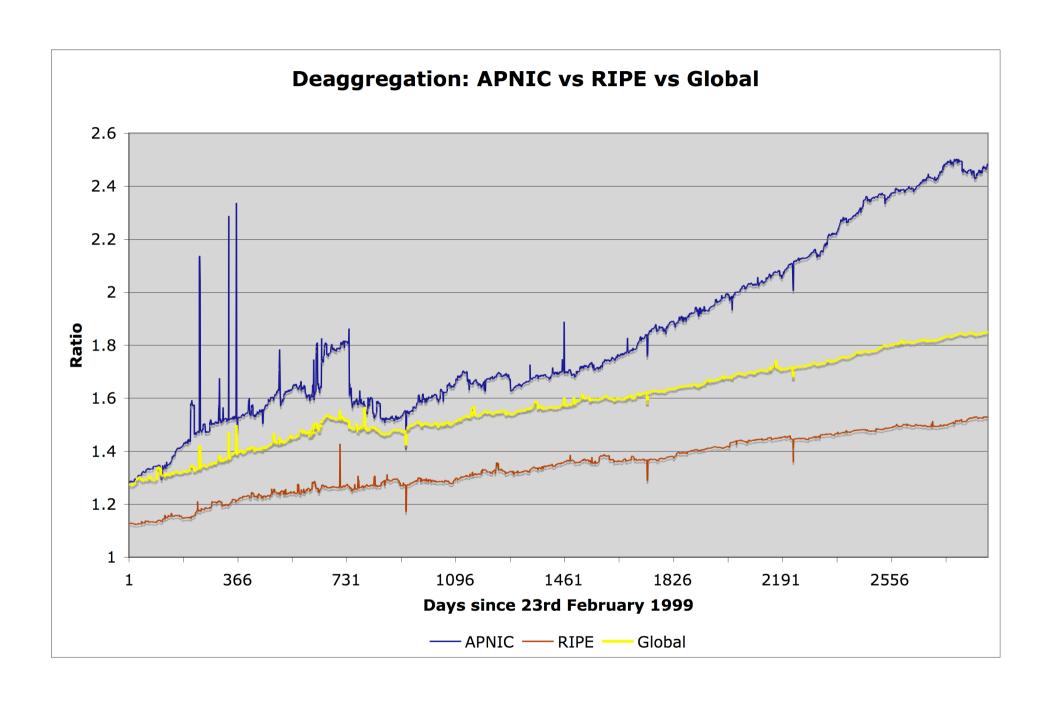
- What is Aggregation?
- RIPE-399 Aggregation Recommendations
- What is happening world wide?

Developed v Developing Internet

- Deaggregation Factor:
 - Routing Table size/Aggregated Size
- Some regions show rampant deaggregation

Asia Pacific2.48

Latin America 3.40


Africa 2.58

Compare with:

Global Average 1.85

Europe 1.53

North America 1.69

Observations

- Huge gulf in operational good practices between developing and developed Internet
 - Threatens the very existence of the Internet as we know it
- RIPE-399 is only a recommendation
 - Hopefully all the RIRs will include pointers to it with each address allocation
 - Hopefully more ISPs will pay attention to it
 - Training is there most ISPs choose to ignore it

Conclusion

The Internet is in peril as never before

- RIPE-399 now exists
- Make it your BGP good practice document