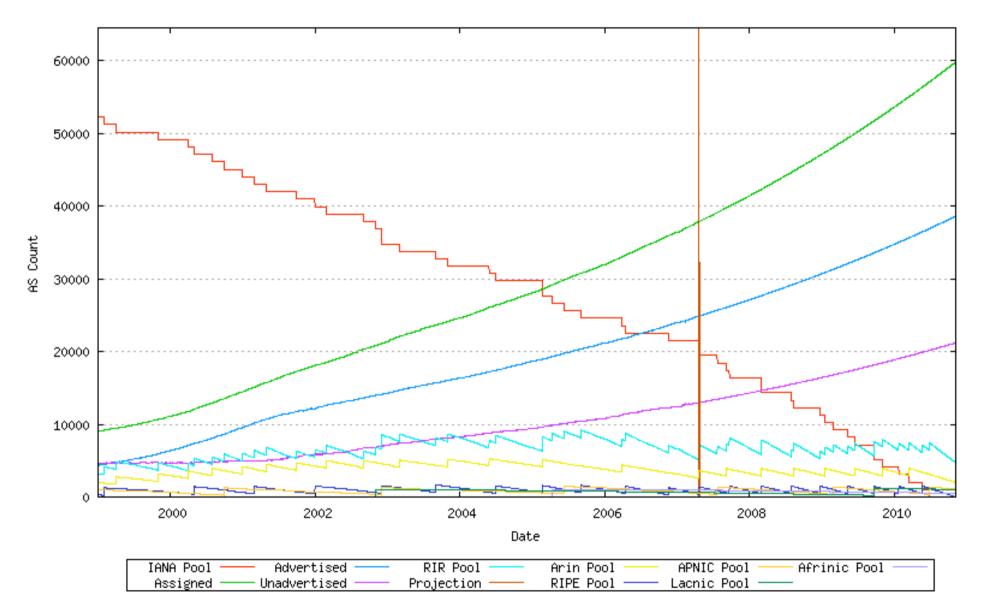


Philip Smith

SANOG 11 10th-18th January 2008 Dhaka, Bangladesh

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique number


Autonomous System Number

An ASN is a 16-bit integer

- 1-64511 are assigned by the Regional Internet Registries
- 64512-65534 are private ASNs and should never be used on the Internet
- 0 and 65535 are reserved
- Current allocations up to 43007 have been made to the RIRs

ASN status

- The pool of 16-bit ASNs will soon be exhausted
 - Analysis at http://www.potaroo.net/tools/asns/
 - Estimates are that the 16-bit ASN pool will be exhausted late 2010
- Work started in 2001 to extend the ASN pool to 32-bits

Source: http://www.potaroo.net/tools/asns/fig28.png

32-bit ASNs

- Standards documents (drafts)
 - Description of 32-bit ASNs
 - www.rfc-editor.org/rfc/rfc4893.txt
 - Proposal for the representation of 32-bit ASNs
 - www.ietf.org/internet-drafts/draft-michaelson-4byte-asrepresentation-05.txt
 - New extended community
 - www.ietf.org/internet-drafts/draft-rekhter-as4octet-extcommunity-01.txt
- AS 23456 is reserved as interface between 16-bit and 32-bit ASN world

Getting a 32-bit ASN

- Sample RIR policy
 - www.apnic.net/docs/policy/asn-policy.html
- From 1st January 2007
 - 32-bit ASNs available on request
- From 1st January 2009
 - 32-bit ASNs assigned by default
 - 16-bit ASNs only available on request
- From 1st January 2010
 - No distinction ASNs assigned from 32-bit pool

Representation

- 32-bit ASNs extend the pool:
 - 0-65535 extended to 0-4294967295
- Still discussion on representation of 65536-4294967295 range
- Some favour:
 - For 65536-4294967295: X.Y
 - (draft-michaelson-4byte-as-representation-05.txt)
 - But how will regular expressions work?
- Some favour traditional format
 - But gets bulky to handle when numbers get v big

IANA Assignments

- 0.0 0.65535
- 2.0 2.1023
- **3.0 3.1023**
- **4.0 4.1023**
- 5.0 5.1023 AfriNIC
- 6.0 6.1023 ARIN
- Remainder are reserved or held by IANA

16-bit ASN block

APNIC

RIPE NCC

LACNIC

Changes (1)

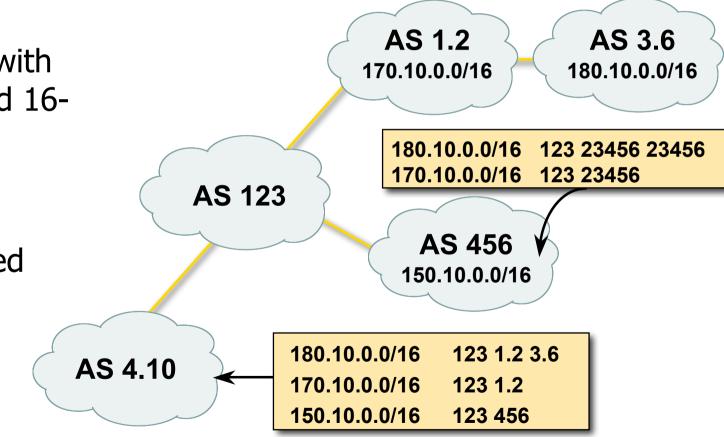
- 32-bit ASNs are backwardly compatible with 16-bit ASNs
- There is no flag day
- You do NOT need to:
 - Throw out your old routers
 - Replace your 16-bit ASN with a 32-bit ASN

Changes (2)

You do need to be aware that:

- Your customers will come with 32-bit ASNs
- ASN 23456 is not a bogon!
- You will need a router supporting 32-bit ASNs to use a 32-bit ASN
- If you have a proper BGP implementation, 32-bit ASNs will be transported silently across your network

How does it work (1)?


- Local router only supports 16-bit ASN
- Remote router uses 32-bit ASN
- BGP peering initiated:
 - Remote asks local if 32-bit supported (BGP capability negotiation)
 - When local says "no", remote then presents AS23456
 - Local needs to be configured to peer with remote using AS23456

How does it work (2)?

- BGP peering initiated (cont):
 - BGP session established using AS23456
 - 32-bit ASN included in a new BGP attribute called AS4_PATH
 - (as opposed to AS_PATH for 16-bit ASNs)
- Result:
 - 16-bit ASN world sees 16-bit ASNs and 23456 standing in for 32-bit ASNs
 - 32-bit ASN world sees 16 and 32-bit ASNs

Example:

- Internet with 32-bit and 16bit ASNs
- AS-PATH length maintained

What has changed?

- Two new BGP attributes:
 - AS4_PATH
 - Carries 32-bit ASN path info
 - AS4_AGGREGATOR
 - Carries 32-bit ASN aggregator info
 - Well-behaved BGP implementations will simply pass these along if they don't understand them
- AS23456 (AS_TRANS)

What do they look like?

IPv4 prefix originated by AS 1.202 In 32-bit ASN world:

bgpctl show rib 203.10.62.0/24
flags: * = Valid, > = Selected, I = via IBGP, A = Announced
origin: i = IGP, e = EGP, ? = Incomplete

flags destination gateway lpref med aspath origin *> 203.10.62.0/24 147.28.0.1 100 0 0.3130 0.1239 0.4637 0.1221 1.202 i

In 16-bit ASN world:

router# sh ip bgp 203.10.62.0

Network	Next Hop	Metric LocPrf Weight Path
*> 203.10.62.0	202.249.2.169	0 2497 4637 1221 23456 i

What do they look like?

IPv6 prefix originated by AS 6.3

RP/0/RP0/CPU0:leviathan#show bgp ipv6 unicast 2001:4810:2000::/35
BGP routing table entry for 2001:4810:2000::/35
Versions:
 Process bRIB/RIB SendTblVer
 Speaker 95735 95735
Paths: (1 available, best #1)
 Not advertised to any peer
 Path #1: Received by speaker 0
 19401 27750 20312 20080 11537 10886 33437 6.3
 2001:5e8:0:fffd:0:9:1:2 from 2001:5e8:0:fffd:0:9:1:2 (216.24.191.231)
 Origin IGP, metric 291, localpref 74, valid, external, best
 Community: 5050:42 19401:5000

Implementations (Dec 07)

- Cisco IOS-XR 3.4 onwards
 - Cisco IOS 12.5T, late 2008
- Quagga (patches for 0.99.6)
- OpenBGPd (patches for 3.9 & 4.0)
- JunOSe 4.1.0 (ERX only)
 - M and T series no plans known
- Redback

What next?

- Pester your router vendors for 32-bit ASN support
 - Do you really want to run beta software in your core network?
 - October 2010 is not far away
 - Stable software, deployment cycles &c

Conclusion

- The Internet will not break
- Your network will not break
- If you have an ASN today:
 - You don't need to change anything
 - 32-bit ASNs appear as AS 23456
- If you have no ASN today:
 - Your routers will need 32-bit ASN support after 1st January 2009