BGP Route Aggregation Best Practices

Philip Smith

PhNOG 2 3rd-7th December 2007 Manila, Philippines

Agenda

- What is Aggregation?
- RIPE-399 Aggregation
 Recommendations
- What is happening world wide?

Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network
- Subprefixes of address block must NOT be announced to Internet unless aiding traffic engineering for multihoming
- Subprefixes of this aggregate will be present internally in the ISP network

Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- Registries publish their minimum allocation size
 - Anything from a /20 to a /22 depending on RIR
 - Different sizes for different address blocks
- No real reason to see anything longer than a /22 prefix in the Internet
 - BUT there are currently >125000 /24s!

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announces customers' individual networks to the Internet

Aggregation – Bad Example

Customer link goes down

- Their /23 network becomes unreachable
- /23 is withdrawn from AS100's iBGP
- Their ISP doesn't aggregate its /19 network block
 - /23 network withdrawal announced to peers
 - starts rippling through the Internet
 - added load on all Internet backbone routers as network is removed from routing table

- Customer link returns
 - Their /23 network is now visible to their ISP
 - Their /23 network is readvertised to peers
 - Starts rippling through Internet
 - Load on Internet backbone routers as network is reinserted into routing table
 - Some ISP's suppress the flaps
 - Internet may take 10-20 min or longer to be visible
 - Where is the Quality of Service???

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announced /19 aggregate to the Internet

Aggregation – Good Example

- Customer link goes down
 - their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- /19 aggregate is still being announced
 - no BGP hold down problems
 - no BGP propagation delays
 - no damping by other ISPs

- Customer link returns
 - Their /23 network is visible again
 - The /23 is re-injected into AS100's iBGP
 - The whole Internet becomes visible immediately
 - Customer has Quality of Service perception

Aggregation – Summary

- Good example is what everyone should do!
 - Adds to Internet stability
 - Reduces size of routing table
 - Reduces routing churn
 - Improves Internet QoS for everyone
- Bad example is what too many still do!
 - Why? Lack of knowledge?
 - Laziness?

The Internet Today (November 2007)

- Current Internet Routing Table Statistics
 - BGP Routing Table Entries239222
 - Prefixes after maximum aggregation 122992

116637

- Unique prefixes in Internet
- Prefixes smaller than registry alloc
 111829
- /24s announced
 125530
- only 5734 /24s are from 192.0.0/8
- ASes in use 26769

"The New Swamp"

- 'Swamp Space' is name used for areas of poor aggregation
 - The original swamp was 192.0.0/8 from the former class C block
 - Name given just after the deployment of CIDR
 - The new swamp is creeping across all parts of the Internet
 - Not just RIR space, but "legacy" space too

"The New Swamp" RIR Space – February 1999

RIR blocks contribute 49393 prefixes or 88% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks	Block	Networks
24/8	165	74/8	0	124/8	0	205/8	2584
41/8	0	75/8	0	125/8	0	206/8	3127
58/8	0	76/8	0	126/8	0	207/8	2723
59/8	0	80/8	0	188/8	0	208/8	2817
60/8	0	81/8	0	189/8	0	209/8	2574
61/8	3	82/8	0	190/8	0	210/8	617
62/8	87	83/8	0	192/8	6275	211/8	0
63/8	20	84/8	0	193/8	2390	212/8	717
64/8	0	85/8	0	194/8	2932	213/8	1
65/8	0	86/8	0	195/8	1338	216/8	943
66/8	0	87/8	0	196/8	513	217/8	0
67/8	0	88/8	0	198/8	4034	218/8	0
68/8	0	89/8	0	199/8	3495	219/8	0
69/8	0	90/8	0	200/8	1348	220/8	0
70/8	0	91/8	0	201/8	0	221/8	0
71/8	0	121/8	0	202/8	2276	222/8	0
72/8	0	122/8	0	203/8	3622		
73/8	0	123/8	0	204/8	3792		

"The New Swamp" RIR Space – February 2006

RIR blocks contribute 161287 prefixes or 88% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks	Block	Networks
24/8	3001	74/8	109	124/8	292	205/8	2934
41/8	41	75/8	2	125/8	682	206/8	3879
58/8	606	76/8	4	126/8	27	207/8	4385
59/8	628	80/8	1925	188/8	1	208/8	3239
60/8	468	81/8	1350	189/8	0	209/8	5611
61/8	2396	82/8	1158	190/8	39	210/8	3908
62/8	1860	83/8	1130	192/8	6927	211/8	2291
63/8	2837	84/8	971	193/8	5203	212/8	2920
64/8	5374	85/8	1426	194/8	4061	213/8	3071
65/8	3785	86/8	650	195/8	3519	216/8	6893
66/8	6292	87/8	629	196/8	1264	217/8	2590
67/8	1832	88/8	328	198/8	4908	218/8	1220
68/8	3069	89/8	113	199/8	4156	219/8	1003
69/8	3315	90/8	2	200/8	6757	220/8	1657
70/8	1597	91/8	2	201/8	1614	221/8	765
71/8	888	121/8	0	202/8	9759	222/8	914
72/8	1772	122/8	0	203/8	9527		
73/8	274	123/8	0	204/8	5474		

"The New Swamp" Summary

- RIR space shows creeping deaggregation
 - Today an RIR /8 block averages around 6000 prefixes once fully allocated
 - → Existing 74 /8s will eventually cause 444000 prefix announcements
- Food for thought:
 - Remaining 58 unallocated /8s and the 74 RIR /8s combined will cause:
 - 852000 prefixes with 6000 prefixes per /8 density
 - Plus 12% due to "non RIR space deaggregation"
 - \rightarrow Routing Table size of 954240 prefixes

"The New Swamp" Summary

- Rest of address space is showing similar deaggregation too
- What are the reasons?
 - Main justification is traffic engineering
- Real reasons are:
 - Lack of knowledge
 - Laziness
 - Deliberate & knowing actions

BGP Report (bgp.potaroo.net)

- 199336 total announcements in October 2006
- 129795 prefixes
 - After aggregating including full AS PATH info
 - i.e. including each ASN's traffic engineering
 - 35% saving possible
- 109034 prefixes
 - After aggregating by Origin AS
 - i.e. ignoring each ASN's traffic engineering
 - 10% saving possible

The excuses

- Traffic engineering causes 10% of the Internet Routing table
- Deliberate deaggregation causes 35% of the Internet Routing table

Efforts to improve aggregation

- The CIDR Report
 - Initiated and operated for many years by Tony Bates
 - Now combined with Geoff Huston's routing analysis
 - www.cidr-report.org
 - Results e-mailed on a weekly basis to most operations lists around the world
 - Lists the top 30 service providers who could do better at aggregating

The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse

Agenda

- What is Aggregation?
- RIPE-399 Aggregation Recommendations
- What is happening world wide?

Route Aggregation Recommendations

- LINX attempted aggregation policy for members
 - It failed even though most members voted for policy
- RIPE Routing Working Group work item from early 2006
 - Based on early LINX concept
 - Authored by Philip Smith, Mike Hughes (LINX) and Rob Evans (UKERNA)

Route Aggregation Recommendations

RIPE Document — RIPE-399

- http://www.ripe.net/ripe/docs/ripe-399.html
- Discusses:
 - History of aggregation
 - Causes of de-aggregation
 - Impacts on global routing system
 - Available Solutions
 - Recommendations for ISPs

History:

- Classful to classless migration
 - Clean-up efforts in 192/8
- CIDR Report
 - Started by Tony Bates to encourage adoption of CIDR & aggregation
 - Mostly ignored through late 90s
 - Now part of extensive BGP table analysis by Geoff Huston
- Introduction of Regional Internet Registry system and PA address space

Deaggregation: Claimed causes (1):

- Routing System Security
 - "Announcing /24s means that no one else can DOS the network"
- Reduction of DOS attacks & miscreant activities
 - "Announcing only address space in use as rest attracts 'noise'"
- Commercial Reasons
 - "Mind your own business"

Deaggregation: Claimed causes (2):

- Leakage of iBGP outside of local AS
 - eBGP is NOT iBGP how many ISPs know this?
- Traffic Engineering for Multihoming
 - Spraying out /24s hoping it will work
 - Rather than do any real engineering
- Legacy Assignments
 - "All those pre-RIR assignments are to blame"
 - In reality it is both RIR and legacy assignments

Impacts (1):

- Router memory
 - Shortens router life time as vendors underestimate memory growth requirements
 - Depreciation life-cycle shortened
 - Increased costs for ISP and customers
- Router processing power
 - Processors are underpowered as vendors underestimate CPU requirement
 - Depreciation life-cycle shortened
 - Increased costs for ISP and customers

Impacts (2):

- Routing System convergence
 - Larger routing table → slowed convergence
 - Can be improved by faster control plane processors — see earlier
- Network Performance & Stability
 - Slowed convergence → slowed recovery from failure
 - Slowed recovery → longer downtime
 - Longer downtime → unhappy customers

Solutions (1):

- CIDR Report
 - Global aggregation efforts
 - Running since 1994
- Routing Table Report
 - Per RIR region aggregation efforts
 - Running since 1999
- Filtering recommendations
 - Training, tutorials, Project Cymru,...
- "CIDR Police"

Solutions (2):

- BGP Features:
 - NO_EXPORT Community
 - NOPEER Community
 - RFC3765 but no one has implemented it
 - AS_PATHLIMIT attribute
 - Still working through IETF IDR Working Group
 - Provider Specific Communities
 - Some ISPs use them; most do not

RIPE-399 Recommendations:

- Announcement of initial allocation as a single entity
- Subsequent allocations aggregated if they are contiguous and bit-wise aligned
- Prudent subdivision of aggregates for Multihoming
- Use BGP enhancements already discussed
- (Oh, and all this applies to IPv6 too)

Agenda

- What is Aggregation?
- RIPE-399 Aggregation Recommendations
- What is happening world wide?

Looking at Deaggregation

- CIDR Report
 - www.cidr-report.org
 - Encourages aggregation following CIDRisation of Internet
 - Today: extensive suite of reports and tools covering state of BGP table
- Routing Report
 - BGP table status on per RIR basis
 - Original CIDR Report and a whole lot more

Deaggregation Factor

- Routing Report
 - One summary takes BGP table and aggregates prefixes by origin AS
 - Called "Max Aggregation" in report
 - Global and per RIR basis
 - http://thyme.apnic.net/current/
- New Deaggregation Factor:
 - Measure of Routing Table size/Aggregated Size
 - Global value has been increasing slowly and steadily since "records began"

"Original Internet" — 2007/11

Total Prefixes

- Global BGP Table
 - 239k prefixes
- North America
 - 112k prefixes
- - 50k prefixes

Deaggregation Factor

- Global Average
 - **1.94**
- North America
 - **1.75**
- Europe & Middle East Europe & Middle East 1.55

"Newer Internet" — 2007/11

Total Prefixes

- Global BGP Table
 - 239k prefixes
- Asia & Pacific
 - 56k prefixes
- Africa
 - 3k prefixes
- Latin America & Caribbean
 - 18k prefixes

Deaggregation Factor

- Global Average
 - **1.94**
- Asia & Pacific
 - **2.62**
- Africa
 - **3.01**
- Latin America & Caribbean
 - **3.88**

Africa Aggregation Savings Summary

ASN No of N	lets Poss Sav	vings I	Description
24863 3	89 35	52 1	LINKdotNET AS number
20858 1	.98 19	95 1	EgyNet
6713 1	.43 13	32 :	Itissalat Al-MAGHRIB
5536 1	.24 11	.4	Internet Egypt Network
33783 1	.23 10)7 1	EEPAD TISP TELECOM & INTERNET
33776 1	.00 9	97 5	Starcomms Nigeria Limited
24835	88 8	32 1	RAYA Telecom - Egypt
15475	81 7	נ 77	Nile Online
23889	76 6	51 1	MAURITIUS TELECOM
20484	64 5	58 .	Yalla Online Autonomous Syste
3741 2	81 5	55 !	The Internet Solution
15706	58 5	54 .	Sudatel Internet Exchange Aut
29571	55 4	8 (Ci Telecom Autonomous system
12455	36 3	33 .	Jambonet Autonomous system
21152	31 2	26 2	AS for the uplinks of Soficom
10798	27 2	26 9	Standard Bank of South Africa
2018 1	.41 2	25 !	Tertiary Education Network
33774	48 2	22 2	AS Number for Telecom Algeria
8524	32 2	22 2	AUCEGYPT Autonomous System
15804	22 2	21 2	AS of The Way Out Internet So

http://thyme.apnic.net/current/data-CIDRnet-AFRINIC

Asia & Pacific Aggregation Savings Summary

ASN No	of Nets	Poss Savings	Description
4755	1464	1395	Videsh Sanchar Nigam Ltd. Aut
9498	1051	987	BHARTI BT INTERNET LTD.
17488	879	809	Hathway IP Over Cable Interne
4134	1103	800	CHINANET-BACKBONE
9583	1090	673	Sify Limited
7545	720	598	TPG Internet Pty Ltd
18101	611	555	Reliance Infocom Ltd Internet
4668	520	510	LG-EDS Systems Inc.
9829	519	509	BSNL National Internet Backbo
4766	816	487	Korea Telecom (KIX)
4812	524	447	China Telecom (Shanghai)
17676	503	439	Softbank BB Corp.
17974	398	384	PT TELEKOMUNIKASI INDONESIA
4808	504	382	CNCGROUP IP network: China169
9443	440	370	Primus Telecommunications
4802	481	340	Wantree Development
4538	355	320	China Education and Research
7552	296	292	Vietel Corporation
9929	325	276	China Netcom Corp.
4780	308	264	Digital United Inc.

http://thyme.apnic.net/current/data-CIDRnet-APNIC

North America Aggregation Savings Summary

ASN	No of Nets	Poss Savings	Description
11492	1173	1131	Cable One
18566	1032	1023	Covad Communications
4323	1377	1014	Time Warner Telecom
6478	1124	945	AT&T Worldnet Services
22773	819	765	Cox Communications, Inc.
5668	664	647	CenturyTel Internet Holdings,
19262	812	629	Verizon Global Networks
15270	603	562	PaeTec.net -a division of Pae
6517	584	551	Yipes Communications, Inc.
19916	569	522	OLM LLC
6197	1030	521	BellSouth Network Solutions,
2386	1271	490	AT&T Data Communications Serv
855	546	484	Canadian Research Network
33588	470	447	Bresnan Communications, LLC.
3356	833	418	Level 3 Communications, LLC
7011	982	412	Citizens Utilities
20115	846	393	Charter Communications
11139	380	352	Cable & Wireless Dominica
3464	371	346	Alabama SuperComputer Network
3602	414	338	Sprint Canada, Inc.

http://thyme.apnic.net/current/data-CIDRnet-ARIN

Latin America Aggregation Savings Summary

ASN	No	of Nets	Poss	Savings	Description
8151		1161		946	UniNet S.A. de C.V.
11830		539		530	Instituto Costarricense de El
16814		427		417	NSS, S.A.
14522		381		373	SatNet S.A.
7303		380		321	Telecom Argentina Stet-France
6471		357		319	ENTEL CHILE S.A.
11172		375		315	Servicios Alestra S.A de C.V
22047		317		304	VTR PUNTO NET S.A.
10481		301		291	Prima S.A.
14117		285		270	Telefonica del Sur S.A.
11556		236		232	Cable-Wireless Panama
6147		242		222	Telefonica Del Peru
10620		260		217	TVCABLE BOGOTA
28573		213		186	NET Servicos de Comunicao S.A
7738		206		182	Telecomunicacoes da Bahia S.A
23216		220		173	RAMtelecom Telecomunicaciones
20299		199		169	NEWCOM AMERICAS
19169		183		164	Telconet
8163		169		154	METROTEL REDES S.A.
21826		186		139	INTERCABLE
1					

http://thyme.apnic.net/current/data-CIDRnet-LACNIC

EU & Middle East Aggregation Savings Summary

ASN 1	No of Nets	Poss Savings	Description
9116	347	319	Goldenlines main autonomous s
8551	327	287	Bezeq International
8866	280	254	Bulgarian Telecommunication C
8452	239	232	TEDATA
3352	235	194	Ibernet, Internet Access Netw
12479	195	189	Uni2 Autonomous System
9121	210	185	TTnet Autonomous System
3215	264	173	France Telecom Transpac
3269	230	158	TELECOM ITALIA
5462	174	149	Telewest Broadband
5486	154	136	Euronet Digital Communication
6830	170	133	UPC Distribution Services
29357	135	131	WATANIYA TELECOM
9155	129	119	QualityNet AS number
15471	180	116	SNR - Societatea Nationala de
3300	214	112	AUCS Communications Services
31083	105	98	PowerNet.BG, Sofia, Bulgaria
9051	149	94	INCONET Autonomous System
15611	96	94	Iranian Research Organisation
12883	97	93	Farlep-Internet ISP

http://thyme.apnic.net/current/data-CIDRnet-RIPE

Observations

- Huge gulf in operational good practices between "older" and "newer" Internet
 - Could threaten the Internet as we know it
- RIPE-399 is only a recommendation
 - Hopefully all the RIRs will include pointers with each address allocation
 - Hopefully more ISPs will pay attention to it
 - Training is there most ISPs choose to ignore it

Conclusion

- Newer" Internet is growing rapidly
 - As is the deaggregation there
- RIPE-399 now exists
- Make it your BGP good practice document