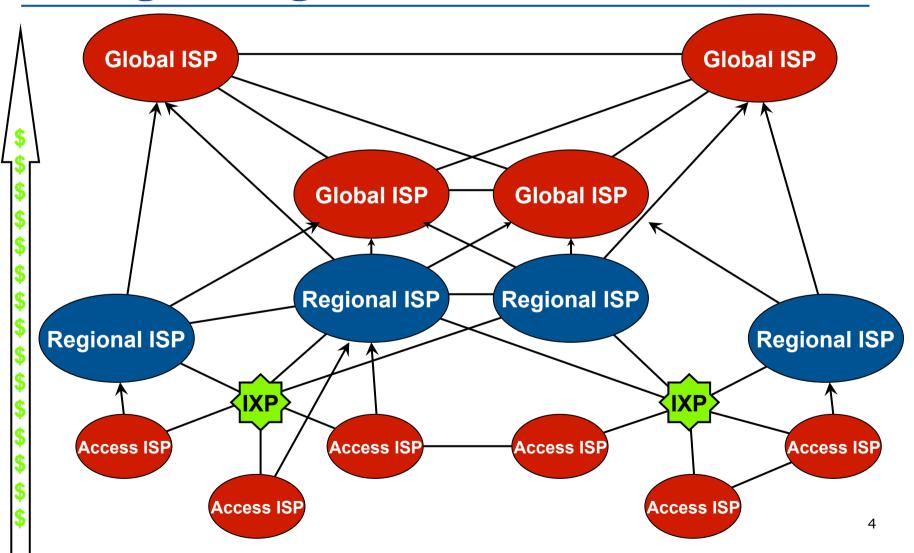
Peering, Transit and IXP Design

Philip Smith MENOG 13 Kuwait 15th – 24th September 2013

Presentation Slides

Will be available on

- http://thyme.apnic.net/ftp/seminars/ MENOG13-IXP-NetworkDesign.pdf
- And on the MENOG13 website


Feel free to ask questions any time

The Internet

Internet is made up of ISPs of all shapes and sizes

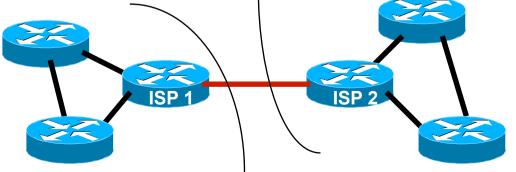
- Some have local coverage (access providers)
- Others can provide regional or per country coverage
- And others are global in scale
- These ISPs interconnect their businesses
 - They don't interconnect with every other ISP (over 43000 distinct autonomous networks) – won't scale
 - They interconnect according to practical and business needs
- Some ISPs provide transit to others
 - They interconnect other ISP networks

Categorising ISPs

Peering and Transit

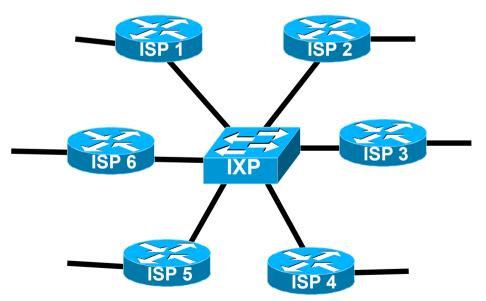
Transit

- Carrying traffic across a network
- Usually for a fee
- Example: Access provider connects to a regional provider


Peering

- Exchanging routing information and traffic
- Usually for no fee
- Sometimes called settlement free peering
- Example: Regional provider connects to another regional provider

Private Interconnect


Two ISPs connect their networks over a private link

- Can be peering arrangement
 - No charge for traffic
 - Share cost of the link
- Can be transit arrangement
 - One ISP charges the other for traffic
 - One ISP (the customer) pays for the link

Public Interconnect

- Several ISPs meeting in a common neutral location and interconnect their networks
 - Usually is a peering arrangement between their networks

ISP Goals

Minimise the cost of operating the business

Transit

- ISP has to pay for circuit (international or domestic)
- ISP has to pay for data (usually per Mbps)
- Repeat for each transit provider
- Significant cost of being a service provider

Peering

- ISP shares circuit cost with peer (private) or runs circuit to public peering point (one off cost)
- No need to pay for data
- Reduces transit data volume, therefore reducing cost

Transit – How it works

- Small access provider provides Internet access for a city's population
 - Mixture of dial up, wireless and fixed broadband
 - Possibly some business customers
 - Possibly also some Internet cafes
- How do their customers get access to the rest of the Internet?
- ISP buys access from one, two or more larger ISPs who already have visibility of the rest of the Internet
 - This is transit they pay for the physical connection to the upstream and for the traffic volume on the link

Peering – How it works

□ If two ISPs are of equivalent sizes, they have:

- Equivalent network infrastructure coverage
- Equivalent customer size
- Similar content volumes to be shared with the Internet
- Potentially similar traffic flows to each other's networks
- This makes them good peering partners

If they don't peer

- They both have to pay an upstream provider for access to each other's network/customers/content
- Upstream benefits from this arrangement, the two ISPs both have to fund the transit costs

The IXP's role

Private peering makes sense when there are very few equivalent players

- Connecting to one other ISP costs X
- Connecting to two other ISPs costs 2 times X
- Connecting to three other ISPs costs 3 times X
- Etc... (where X is half the circuit cost plus a port cost)
- The more private peers, the greater the cost
- IXP is a more scalable solution to this problem

The IXP's role

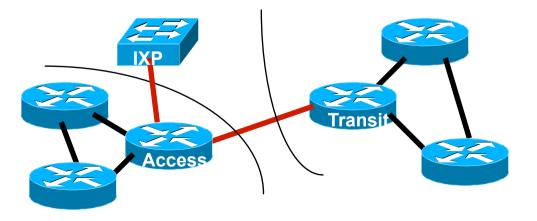
Connecting to an IXP

- ISP costs: one router port, one circuit, and one router to locate at the IXP
- Some IXPs charge annual "maintenance fees"
 - The maintenance fee has potential to significantly influence the cost balance for an ISP
- Generally connecting to an IXP and peering there becomes cost effective when there are at least three other peers
 - The real \$ amount varies from region to region, IXP to IXP

Who peers at an IXP?

Access Providers

- Don't have to pay their regional provider transit fees for local traffic
- Keeps latency for local traffic low
- 'Unlimited' bandwidth through the IXP (compared with costly and limited bandwidth through transit provider)


Regional Providers

- Don't have to pay their global provider transit for local and regional traffic
- Keeps latency for local and regional traffic low
- 'Unlimited' bandwidth through the IXP (compared with costly and limited bandwidth through global provider)

The IXP's role

Global Providers can be located close to IXPs

- Attracted by the potential transit business available
- Advantageous for access & regional providers
 - They can peer with other similar providers at the IXP
 - And in the same facility pay for transit to their regional or global provider
 - (Not across the IXP fabric, but a separate connection)

Connectivity Decisions

Transit

- Almost every ISP needs transit to reach rest of Internet
- One provider = no redundancy
- Two providers: ideal for traffic engineering as well as redundancy
- Three providers = better redundancy, traffic engineering gets harder
- More then three = diminishing returns, rapidly escalating costs and complexity
- Peering
 - Means low (or zero) cost access to another network
 - Private or Public Peering (or both)

Transit Goals

1. Minimise number of transit providers

- But maintain redundancy
- 2 is ideal, 4 or more is bad

2. Aggregate capacity to transit providers

- More aggregated capacity means better value
 Lower cost per Mbps
- 4x 45Mbps circuits to 4 different ISPs will almost always cost more than 2x 155Mbps circuits to 2 different ISPs
 - Yet bandwidth of latter (310Mbps) is greater than that of former (180Mbps) and is much easier to operate

Peering or Transit?

How to choose?

Or do both?

It comes down to cost of going to an IXP

- Free peering
- Paying for transit from an ISP co-located in same facility, or perhaps close by
- Or not going to an IXP and paying for the cost of transit directly to an upstream provider
 - There is no right or wrong answer, someone has to do the arithmetic

Private or Public Peering

Private peering

- Scaling issue, with costs, number of providers, and infrastructure provisioning
- Public peering
 - Makes sense the more potential peers there are (more is usually greater than "two")
- Which public peering point?
 - Local Internet Exchange Point: great for local traffic and local peers
 - Regional Internet Exchange Point: great for meeting peers outside the locality, might be cheaper than paying transit to reach the same consumer base

Local Internet Exchange Point

- Defined as a public peering point serving the local Internet industry
- Local means where it becomes cheaper to interconnect with other ISPs at a common location than it is to pay transit to another ISP to reach the same consumer base
 - Local can mean different things in different regions!

Regional Internet Exchange Point

- □ These are also "local" Internet Exchange Points
- But also attract regional ISPs and ISPs from outside the locality
 - Regional ISPs peer with each other
 - And show up at several of these Regional IXPs
- Local ISPs peer with ISPs from outside the locality
 - They don't compete in each other's markets
 - Local ISPs don't have to pay transit costs
 - ISPs from outside the locality don't have to pay transit costs
 - Quite often ISPs of disparate sizes and influences will happily peer – to defray transit costs

Which IXP?

How many routes are available?

What is traffic to & from these destinations, and by how much will it reduce cost of transit?

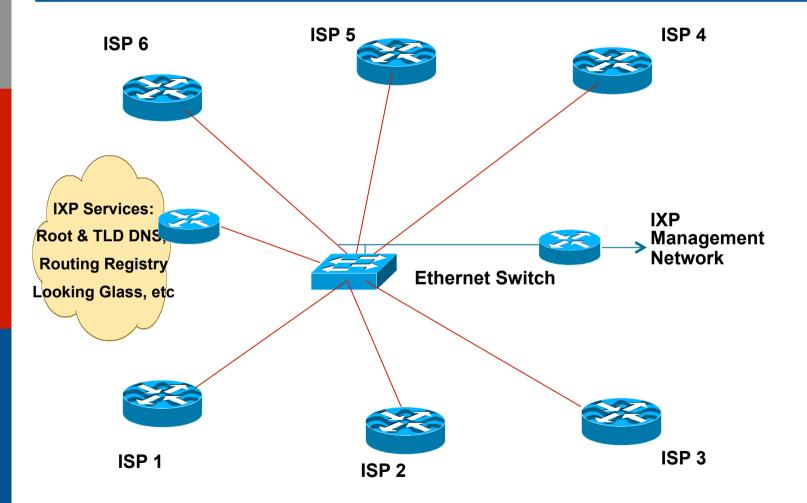
■ What is the cost of co-lo space?

- If prohibitive or space not available, pointless choosing this IXP
- What is the cost of running a circuit to the location?
 - If prohibitive or competitive with transit costs, pointless choosing this IXP
- What is the cost of remote hands/assistance?
 - If no remote hands, doing maintenance is challenging and potentially costly with a serious outage

Internet Exchange Point

Solution

- Every ISP participates in the IXP
- Cost is minimal one local circuit covers all domestic traffic
- International circuits are used for just international traffic – and backing up domestic links in case the IXP fails


Result:


- Local traffic stays local
- QoS considerations for local traffic is not an issue
- RTTs are typically sub 10ms
- Customers enjoy the Internet experience
- Local Internet economy grows rapidly

IXP Design

■ Very simple concept:

- Ethernet switch is the interconnection media
 IXP is one LAN
- Each ISP brings a router, connects it to the ethernet switch provided at the IXP
- Each ISP peers with other participants at the IXP using BGP
- Scaling this simple concept is the challenge for the larger IXPs

- Two switches for redundancy
- ISPs use dual routers for redundancy or loadsharing
- Offer services for the "common good"
 - Internet portals and search engines
 - DNS Root & TLD, NTP servers
 - Routing Registry and Looking Glass

Requires neutral IXP management

- Usually funded equally by IXP participants
- 24x7 cover, support, value add services
- Secure and neutral location
- Configuration
 - IPv4 /24 and IPv6 /64 for IXP LAN
 - ISPs require AS, basic IXP does not

Network Security Considerations

- LAN switch needs to be securely configured
- Management routers require TACACS+ authentication, vty security
- IXP services must be behind router(s) with strong filters

"Layer 3 IXP"

Layer 3 IXP is marketing concept used by Transit ISPs

Real Internet Exchange Points are only Layer 2

IXP Design Considerations

The IXP Core is an Ethernet switch

- It must be a managed switch
- Has superseded all other types of network devices for an IXP
 - From the cheapest and smallest managed 12 or 24 port 10/100 switch
 - To the largest switches now handling high densities of 10GE and 100GE interfaces

Each ISP participating in the IXP brings a router to the IXP location

Router needs:

- One Ethernet port to connect to IXP switch
- One WAN port to connect to the WAN media leading back to the ISP backbone
- To be able to run BGP

- IXP switch located in one equipment rack dedicated to IXP
 - Also includes other IXP operational equipment
- Routers from participant ISPs located in neighbouring/adjacent rack(s)
- Copper (UTP) connections made for 10Mbps, 100Mbps or 1Gbps connections
- Fibre used for 1Gbps, 10Gbps, 40Gbps or 100Gbps connections

Peering

Each participant needs to run BGP

- They need their own AS number
- Public ASN, NOT private ASN
- Each participant configures external BGP directly with the other participants in the IXP
 - Peering with all participants or
 - Peering with a subset of participants

Peering (more)

Mandatory Multi-Lateral Peering (MMLP)

- Each participant is forced to peer with every other participant as part of their IXP membership
- Has no history of success the practice is strongly discouraged
- Multi-Lateral Peering (MLP)
 - Each participant peers with every other participant (usually via a Route Server)
- Bi-Lateral Peering
 - Participants set up peering with each other according to their own requirements and business relationships
 - This is the most common situation at IXPs today

Routing

- ISP border routers at the IXP must NOT be configured with a default route or carry the full Internet routing table
 - Carrying default or full table means that this router and the ISP network is open to abuse by non-peering IXP members
 - Correct configuration is only to carry routes offered to IXP peers on the IXP peering router
- Note: Some ISPs offer transit across IX fabrics
 - They do so at their own risk see above

Routing (more)

- ISP border routers at the IXP should not be configured to carry the IXP LAN network within the IGP or iBGP
 - Use next-hop-self BGP concept
- Don't generate ISP prefix aggregates on IXP peering router
 - If connection from backbone to IXP router goes down, normal BGP failover will then be successful

Address Space

Some IXPs use private addresses for the IX LAN

- Public address space means IXP network could be leaked to Internet which may be undesirable
- Because most ISPs filter RFC1918 address space, this avoids the problem

Some IXPs use public addresses for the IX LAN

- Address space available from the RIRs
- IXP terms of participation often forbid the IX LAN to be carried in the ISP member backbone

Charging

IXPs should be run at minimal cost to participants

Examples:

- Datacentre hosts IX for free
 - Because ISP participants then use data centre for co-lo services, and the datacentre benefits long term
- IX operates cost recovery
 - Each member pays a flat fee towards the cost of the switch, hosting, power & management
- Different pricing for different ports
 - One slot may handle 24 10GE ports
 - Or one slot may handle 96 1GE ports
 - 96 port 1GE card is tenth price of 24 port 10GE card
 - **•** Relative port cost is passed on to participants

Services Offered

- Services offered should not compete with member ISPs (basic IXP)
 - e.g. web hosting at an IXP is a bad idea unless all members agree to it
- IXP operations should make performance and throughput statistics available to members
 - Use tools such as MRTG/Cacti to produce IX throughput graphs for member (or public) information

ccTLD DNS

- the country IXP could host the country's top level DNS
- e.g. "SE." TLD is hosted at Netnod IXes in Sweden
- Offer back up of other country ccTLD DNS
- Root server
 - Anycast instances of I.root-servers.net, F.rootservers.net etc are present at many IXes

Usenet News

- Usenet News is high volume
- could save bandwidth to all IXP members

Route Collector

Route collector shows the reachability information available at the exchange

Looking Glass

- One way of making the Route Collector routes available for global view (e.g. www.traceroute.org)
- Public or members only access
- Useful for members to check BGP filters
- Useful for everyone to check route availability at the IX

Route Server

- A Route Collector that also sends the prefixes it has collected to its peers
- Like a Route Collector, usually a router or Unix based system running BGP
- Does not forward packets
- Useful for scaling eBGP sessions for larger IXPs
- Participation needs to be optional
 - And will be used by ISPs who have open peering policies

Content Redistribution/Caching

 For example, Akamised update distribution service

Network Time Protocol

- Locate a stratum 1 time source (GPS receiver, atomic clock, etc) at IXP
- Routing Registry
 - Used to register the routing policy of the IXP membership

What can go wrong?

High annual fees

- Should be cost recovery
- Charging for traffic between participants
 - Competes with commercial transit services
- Competing IXPs
 - Too expensive for ISPs to connect to all
- Too many rules & restrictions
 - Want all network operators to participate
- Mandatory Multi-Lateral Peering
 - Has no history of success
- Interconnected IXPs
 - Who pays for the interconnection?

Etc...

Conclusion

IXPs are technically very simple to set up
 Little more than:

- An ethernet switch
- Neutral secure reliable location
- Consortium of members to operate it
- Political aspects can be more challenging:
 - Competition between ISP members
 - "ownership" or influence by outside parties