BGP Techniques for Network Operators

Philip Smith <philip@nsrc.org> APRICOT 2016 22nd – 26th February 2016 Auckland, New Zealand

Last updated 21st February 2016

Presentation Slides

Will be available on

- http://bgp4all.com/ftp/seminars/ APRICOT2016-BGP-Techniques.pdf
- And on the APRICOT2016 website

Feel free to ask questions any time

BGP Techniques for Network Operators

BGP Basics

Scaling BGP

Using Communities

Deploying BGP in an ISP network

BGP Basics

What is BGP?

Border Gateway Protocol

- A Routing Protocol used to exchange routing information between different networks
 - Exterior gateway protocol
- Described in RFC4271
 - RFC4276 gives an implementation report on BGP
 - RFC4277 describes operational experiences using BGP
- The Autonomous System is the cornerstone of BGP
 - It is used to uniquely identify networks with a common routing policy

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique 32-bit integer (ASN)

Autonomous System Number (ASN)

- Two ranges 0-65535 (original 16-bit range) (32-bit range – RFC6793) 65536-4294967295 □ Usage: 0 and 65535 (reserved) (public Internet) 1-6449564496-64511 (documentation – RFC5398) 64512-65534 (private use only) (represent 32-bit range in 16-bit world) 23456 (documentation – RFC5398) 65536-65551 65552-4199999999 (public Internet) 420000000-4294967295 (private use only - RFC6996)
- 32-bit range representation specified in RFC5396
 - Defines "asplain" (traditional format) as standard notation

Autonomous System Number (ASN)

- ASNs are distributed by the Regional Internet Registries
 - They are also available from upstream ISPs who are members of one of the RIRs
- Current 16-bit ASN assignments up to 64297 have been made to the RIRs
 - Around 43000 16-bit ASNs are visible on the Internet
 - Around 200 left unassigned
- Each RIR has also received a block of 32-bit ASNs
 - Out of 12400 assignments, around 9500 are visible on the Internet
- See www.iana.org/assignments/as-numbers

BGP Basics

Demarcation Zone (DMZ)

BGP General Operation

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the forwarding table
- Best path is sent to external BGP neighbours
- Policies are applied by influencing the best path selection

eBGP & iBGP

- BGP used internally (iBGP) and externally (eBGP)
- IBGP used to carry
 - Some/all Internet prefixes across ISP backbone
 - ISP's customer prefixes
- eBGP used to
 - Exchange prefixes with other ASes
 - Implement routing policy

BGP/IGP model used in ISP networks

Model representation

External BGP Peering (eBGP)

Between BGP speakers in different AS
Should be directly connected
Never run an IGP between eBGP peers

Internal BGP (iBGP)

- **BGP** peer within the same AS
- Not required to be directly connected
 - IGP takes care of inter-BGP speaker connectivity

■ iBGP speakers must to be fully meshed:

- They originate connected networks
- They pass on prefixes learned from outside the ASN
- They do not pass on prefixes learned from other iBGP speakers

Internal BGP Peering (iBGP)

Each iBGP speaker must peer with every other iBGP speaker in the AS

Peering between Loopback Interfaces

17

BGP Attributes

BGP's policy tool kit

What Is an Attribute?

•••• H

Next Hop

AS Path MED

....

Part of a BGP Update

Describes the characteristics of prefix

Can either be transitive or non-transitive

Some are mandatory

BGP Attributes

Carry various information about or characteristics of the prefix being propagated

- AS-PATH
- NEXT-HOP
- ORIGIN
- AGGREGATOR
- LOCAL_PREFERENCE
- Multi-Exit Discriminator
- (Weight)
- COMMUNITY

AS-Path

AS-Path (with 16 and 32-bit ASNs)

Next Hop

iBGP Next Hop

- Next hop is ibgp router loopback address
- Recursive route look-up

Next Hop Best Practice

BGP default is for external next-hop to be propagated unchanged to iBGP peers

- This means that IGP has to carry external next-hops
- Forgetting means external network is invisible
- With many eBGP peers, it is unnecessary extra load on IGP
- ISP Best Practice is to change external next-hop to be that of the local router

Next Hop (Summary)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Change external next hops to that of local router
- Allows IGP to make intelligent forwarding decision

Origin

Conveys the origin of the prefix
Historical attribute

- Used in transition from EGP to BGP
- Transitive and Mandatory Attribute
- Influences best path selection
- □ Three values: IGP, EGP, incomplete
 - IGP generated by BGP network statement
 - EGP generated by EGP
 - incomplete redistributed from another routing protocol

Aggregator

- Conveys the IP address of the router or BGP speaker generating the aggregate route
- Optional & transitive attribute
- Useful for debugging purposes
- Does not influence best path selection

Local Preference

Local Preference

Local Preference

Non-transitive and optional attribute
Local to an AS – non-transitive

 Default local preference is 100 (Cisco IOS)

Used to influence BGP path selection

 determines best path for *outbound* traffic

Path with highest local preference wins

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator

- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points
 - Determines best path for inbound traffic
- Comparable if paths are from same AS
 - Implementations have a knob to allow comparisons of MEDs from different ASes
- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (RFC4271)

Multi-Exit Discriminator "metric confusion"

MED is non-transitive and optional attribute

- Some implementations send learned MEDs to iBGP peers by default, others do not
- Some implementations send MEDs to eBGP peers by default, others do not
- Default metric varies according to vendor implementation
 - Original BGP spec (RFC1771) made no recommendation
 - Some implementations handled absence of metric as meaning a metric of 0
 - Other implementations handled the absence of metric as meaning a metric of 2³²-1 (highest possible) or 2³²-2
 - Potential for "metric confusion"

Community

Communities are described in RFC1997

- Transitive and Optional Attribute
- 32 bit integer
 - Represented as two 16 bit integers (RFC1998)
 - Common format is <local-ASN>:xx
 - 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved
- Used to group destinations
 - Each destination could be member of multiple communities
- Very useful in applying policies within and between ASes

Community Example (after)

Community Example (after)

Community Example (after)

Community Example

(after)

Well-Known Communities

- Several well known communities
 - www.iana.org/assignments/bgp-well-known-communities
- □ no-export 65535:65281
 - do not advertise to any eBGP peers
- no-advertise
 - do not advertise to any BGP peer
- no-export-subconfed
 - do not advertise outside local AS (only used with confederations)

□ no-peer

do not advertise to bi-lateral peers (RFC3765)

65535:65282

65535:65283

65535:65284

No-Export Community

- AS100 announces aggregate and subprefixes
 - Intention is to improve loadsharing by leaking subprefixes
- Subprefixes marked with no-export community
- Router G in AS200 does not announce prefixes with noexport community set

No-Peer Community

- Sub-prefixes marked with no-peer community are not sent to bi-lateral peers
 - They are only sent to upstream providers

What about 4-byte ASNs?

- Communities are widely used for encoding ISP routing policy
 - 32 bit attribute
- RFC1998 format is now "standard" practice
 - ASN:number
- Fine for 2-byte ASNs, but 4-byte ASNs cannot be encoded
- Solutions:
 - Use "private ASN" for the first 16 bits
 - Wait for http://datatracker.ietf.org/doc/draft-ietf-idras4octet-extcomm-generic-subtype/ to be implemented

Community Implementation details

Community is an optional attribute

- Some implementations send communities to iBGP peers by default, some do not
- Some implementations send communities to eBGP peers by default, some do not
- Being careless can lead to community "confusion"
 - ISPs need consistent community policy within their own networks
 - And they need to inform peers, upstreams and customers about their community expectations

BGP Path Selection Algorithm

Why Is This the Best Path?

BGP Path Selection Algorithm for Cisco IOS: Part One

- 1. Do not consider path if no route to next hop
- 2. Do not consider iBGP path if not synchronised (Cisco IOS)
- 3. Highest weight (local to router)
- 4. Highest local preference (global within AS)
- 5. Prefer locally originated route
- 6. Shortest AS path

BGP Path Selection Algorithm for Cisco IOS: Part Two

- 7. Lowest origin code
 - IGP < EGP < incomplete
- 8. Lowest Multi-Exit Discriminator (MED)
 - If bgp deterministic-med, order the paths by AS number before comparing
 - If bgp always-compare-med, then compare for all paths
 - Otherwise MED only considered if paths are from the same AS (default)

BGP Path Selection Algorithm for Cisco IOS: Part Three

9. Prefer eBGP path over iBGP path
10. Path with lowest IGP metric to next-hop
11. For eBGP paths:

- If multipath is enabled, install N parallel paths in forwarding table
- If router-id is the same, go to next step
- If router-id is not the same, select the oldest path

BGP Path Selection Algorithm for Cisco IOS: Part Four

- 12. Lowest router-id (originator-id for reflected routes)
- 13. Shortest cluster-list
 - Client must be aware of Route Reflector attributes!
- 14. Lowest neighbour address

BGP Path Selection Algorithm

In multi-vendor environments:

- Make sure the path selection processes are understood for each brand of equipment
- All have to follow the RFC, but because of "customer demand", each vendor has:
 - Slightly different implementations
 - Extra steps
 - Extra features
- Watch out for possible MED confusion

Applying Policy with BGP

Controlling Traffic Flow & Traffic Engineering

Applying Policy in BGP: Why?

- Network operators rarely "plug in routers and go"
- External relationships:
 - Control who they peer with
 - Control who they give transit to
 - Control who they get transit from
- Traffic flow control:
 - Efficiently use the scarce infrastructure resources (external link load balancing)
 - Congestion avoidance
 - Terminology: Traffic Engineering

Applying Policy in BGP: How?

Policies are applied by:

- Setting BGP attributes (local-pref, MED, AS-PATH, community), thereby influencing the path selection process
- Advertising or Filtering prefixes
- Advertising or Filtering prefixes according to ASN and AS-PATHs
- Advertising or Filtering prefixes according to Community membership

Applying Policy with BGP: Tools

- Most implementations have tools to apply policies to BGP:
 - Prefix manipulation/filtering
 - AS-PATH manipulation/filtering
 - Community Attribute setting and matching
- Implementations also have policy language which can do various match/set constructs on the attributes of chosen BGP routes

Extending BGP

Documented in RFC2842

- Capabilities parameters passed in BGP open message
- Unknown or unsupported capabilities will result in NOTIFICATION message

□ Codes:

- 0 to 63 are assigned by IANA by IETF consensus
- 64 to 127 are assigned by IANA "first come first served"
- 128 to 255 are vendor specific

Current capabilities are:

See www.iana.org/assignments/capability-codes

0	Reserved	[RFC3392]
1	Multiprotocol Extensions for BGP-4	[RFC4760]
2	Route Refresh Capability for BGP-4	[RFC2918]
3	Outbound Route Filtering Capability	[RFC5291]
4	Multiple routes to a destination capability	[RFC3107]
5	Extended Next Hop Encoding	[RFC5549]
64	Graceful Restart Capability	[RFC4724]
65	Support for 4 octet ASNs	[RFC6793]
66	Deprecated	
67	Support for Dynamic Capability	[ID]
68	Multisession BGP	[ID]
69	Add Path Capability	[ID]
70	Enhanced Route Refresh Capability	[RFC7313]
71	Long Lived Graceful Restart	[ID]
72	CP-ORF Capability	[RFC7543]
73	FQDN Capability	[ID]

Multiprotocol extensions

- This is a whole different world, allowing BGP to support more than IPv4 unicast routes
- Examples include: v4 multicast, IPv6, v6 multicast, VPNs
- Another tutorial (or many!)
- Route refresh is a well known scaling technique covered shortly
- 32-bit ASNs arrived in 2006
- The other capabilities are still in development or not widely implemented or deployed yet

BGP for Internet Service Providers

BGP Basics

- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

BGP Scaling Techniques

BGP Scaling Techniques

Original BGP specification and implementation was fine for the Internet of the early 1990s

But didn't scale

■ Issues as the Internet grew included:

- Scaling the iBGP mesh beyond a few peers?
- Implement new policy without causing flaps and route churning?
- Keep the network stable, scalable, as well as simple?
BGP Scaling Techniques

Current Best Practice Scaling Techniques

- Route Refresh
- Route Reflectors (and Confederations)
- Deploying 4-byte ASNs
- Deprecated Scaling Techniques
 - Route Flap Damping

Dynamic Reconfiguration

Route Refresh

Route Refresh

BGP peer reset required after every policy change

 Because the router does not store prefixes which are rejected by policy

■ Hard BGP peer reset:

- Tears down BGP peering & consumes CPU
- Severely disrupts connectivity for all networks
- Soft BGP peer reset (or Route Refresh):
 - BGP peering remains active
 - Impacts only those prefixes affected by policy change

Route Refresh Capability

- Facilitates non-disruptive policy changes
- For most implementations, no configuration is needed
 - Automatically negotiated at peer establishment
- No additional memory is used
- Requires peering routers to support "route refresh capability" – RFC2918
 - Today most vendors do, and some do an automatic route-refresh after BGP Policy changes

Dynamic Reconfiguration

□ Use Route Refresh capability

- Supported on virtually all routers
- Find out from "show ip bgp neighbor"
- Non-disruptive, "Good For the Internet"

Only hard-reset a BGP peering as a last resort

Consider the impact to be equivalent to a router reboot

Route Reflectors

Scaling the iBGP mesh

Scaling iBGP mesh

Avoid ½n(n-1) iBGP mesh

n=1000 ⇒ nearly half a million ibgp sessions!

Two solutions

- Route reflector simpler to deploy and run
- Confederation more complex, has corner case advantages

Route Reflector: Principle

Route Reflector: Principle

Route Reflector

- Reflector receives path from clients and non-clients
- Selects best path
- If best path is from client, reflect to other clients and nonclients
- If best path is from non-client, reflect to clients only
- Non-meshed clients
- Described in RFC4456

Route Reflector: Topology

- Divide the backbone into multiple clusters
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

Route Reflector: Loop Avoidance

Originator_ID attribute

 Carries the RID of the originator of the route in the local AS (created by the RR)

Cluster_list attribute

- The local cluster-id is added when the update is sent by the RR
- Best to set cluster-id from router-id (address of loopback)
- (Some ISPs use their own cluster-id assignment strategy – but needs to be well documented!)

Route Reflector: Redundancy

- Multiple RRs can be configured in the same cluster not advised!
 - All RRs in the cluster must have the same cluster-id (otherwise it is a different cluster)
- A router may be a client of RRs in different clusters
 - Common today in ISP networks to overlay two clusters – redundancy achieved that way
 - $\blacksquare \rightarrow$ Each client has two RRs = redundancy

Route Reflectors: Redundancy

Route Reflector: Benefits

Solves iBGP mesh problem
Packet forwarding is not affected
Normal BGP speakers co-exist
Multiple reflectors for redundancy
Easy migration
Multiple levels of route reflectors

Route Reflector: Deployment

■ Where to place the route reflectors?

- Always follow the physical topology!
- This will guarantee that the packet forwarding won't be affected
- **D** Typical Service Provider network:
 - PoP has two core routers
 - Core routers are RR for the PoP
 - Two overlaid clusters

Route Reflector: Migration

Typical ISP network:

- Core routers have fully meshed iBGP
- Create further hierarchy if core mesh too big
 Split backbone into regions

Configure one cluster pair at a time

- Eliminate redundant iBGP sessions
- Place maximum one RR per cluster
- Easy migration, multiple levels

Route Reflector: Deployment

■ Where to place the route reflectors?

- Always follow the physical topology!
- This will guarantee that the packet forwarding won't be affected
- **D** Typical Service Provider network:
 - PoP has two core routers
 - Core routers are RR for the PoP
 - Two overlaid clusters

Route Reflector: Migration

Typical ISP network:

- Core routers have fully meshed iBGP
- Create further hierarchy if core mesh too big
 Split backbone into regions

Configure one cluster pair at a time

- Eliminate redundant iBGP sessions
- Place maximum one RR per cluster
- Easy migration, multiple levels

Route Reflectors: Migration

Migrate small parts of the network, one part at a time.

BGP Confederations

Confederations

Divide the AS into sub-AS

- eBGP between sub-AS, but some iBGP information is kept
 - Preserve NEXT_HOP across the sub-AS (IGP carries this information)
 - Preserve LOCAL_PREF and MED
- Usually a single IGPDescribed in RFC5065

Confederations (Cont.)

Visible to outside world as single AS – "Confederation Identifier"

 Each sub-AS uses a number from the private AS range (64512-65534)

iBGP speakers in each sub-AS are fully meshed

- The total number of neighbours is reduced by limiting the full mesh requirement to only the peers in the sub-AS
- Can also use Route-Reflector within sub-AS

Confederations

neighbor 141.153.17.2 remote-as 65531

Confederations: AS-Sequence

Route Propagation Decisions

■ Same as with "normal" BGP:

- From peer in same sub-AS → only to external peers
- From external peers \rightarrow to all neighbors
- "External peers" refers to
 - Peers outside the confederation
 - Peers in a different sub-AS
 - Preserve LOCAL_PREF, MED and NEXT_HOP

RRs or Confederations

	Internet Connectivity	Multi-Level Hierarchy	Policy Control	Scalability	Migration Complexity
Confederations	Anywher e in the Network	Yes	Yes	Medium	Medium to High
Route Reflectors	Anywhere in the Network	Yes	Yes	Very High	Very Low

Most new service provider networks now deploy Route Reflectors from Day One

More points about Confederations

Can ease "absorbing" other ISPs into you ISP – e.g., if one ISP buys another

Or can use AS masquerading feature available in some implementations to do a similar thing

Can use route-reflectors with confederation sub-AS to reduce the sub-AS iBGP mesh

Deploying 32-bit ASNs

How to support customers using the extended ASN range

32-bit ASNs

Standards documents

Description of 32-bit ASNs

www.rfc-editor.org/rfc/rfc6793.txt

- Textual representation
 www.rfc-editor.org/rfc/rfc5396.txt
- New extended community
 www.rfc-editor.org/rfc/rfc5668.txt
- AS 23456 is reserved as interface between 16-bit and 32-bit ASN world

32-bit ASNs – terminology

16-bit ASNs

Refers to the range 0 to 65535

32-bit ASNs

- Refers to the range 65536 to 4294967295
- (or the extended range)

32-bit ASN pool

Refers to the range 0 to 4294967295

Getting a 32-bit ASN

Nowadays:

- Standard application process to the RIRs
- Or via upstream provider
- Sample RIR policy

www.apnic.net/docs/policy/asn-policy.html

- Bootstrap phase from 2007-2010
 - From 1st January 2007
 - 32-bit ASNs were available on request
 - From 1st January 2009
 - 32-bit ASNs were assigned by default
 - 16-bit ASNs were only available on request
 - From 1st January 2010
 - No distinction ASNs assigned from the 32-bit pool

Representation (1)

Initially three formats proposed for the 0-4294967295 ASN range :

- asplain
- asdot
- asdot+

□ In reality:

- Most operators favour traditional plain format
- A few prefer dot notation (X.Y):
 - asdot for 65536-4294967295, e.g 2.4
 - asdot+ for 0-4294967295, e.g 0.64513
- But regular expressions will have to be completely rewritten for asdot and asdot + !!!

Representation (2)

- Rewriting regular expressions for asdot/asdot+ notation
- Example:
 - ^[0-9]+\$ matches any ASN (16-bit and asplain)
 - This and equivalents extensively used in BGP multihoming configurations for traffic engineering
- Equivalent regexp for asdot is:
 - ^([0-9]+)|([0-9]+\.[0-9]+)\$
- Equivalent regexp for asdot+ is:
 - ^[0-9]+\.[0-9]+\$

Changes

- 32-bit ASNs are backward compatible with 16-bit ASNs
- There is no flag day
- You do NOT need to:
 - Throw out your old routers
 - Replace your 16-bit ASN with a 32-bit ASN
- You do need to be aware that:
 - Your customers will come with 32-bit ASNs
 - ASN 23456 is not a bogon!
 - You will need a router supporting 32-bit ASNs to use a 32-bit ASN locally
- If you have a proper BGP implementation, 32-bit ASNs will be transported silently across your network

How does it work?

- If local router and remote router supports configuration of 32-bit ASNs
 - BGP peering is configured as normal using the 32-bit ASN
- If local router and remote router does not support configuration of 32-bit ASNs
 - BGP peering can only use a 16-bit ASN
- If local router only supports 16-bit ASN and remote router/network has a 32-bit ASN
 - Compatibility mode is initiated...
Compatibility Mode (1)

Local router only supports 16-bit ASN and remote router uses 32-bit ASN

BGP peering initiated:

- Remote asks local if 32-bit supported (BGP) capability negotiation)
- When local says "no", remote then presents AS23456
- Local needs to be configured to peer with remote using AS23456

 $\Box \Rightarrow$ Operator of local router has to configure BGP peering with AS23456

Compatibility Mode (2)

■ BGP peering initiated (cont):

- BGP session established using AS23456
- 32-bit ASN included in a new BGP attribute called AS4_PATH

a (as opposed to AS_PATH for 16-bit ASNs)

Result:

- I6-bit ASN world sees 16-bit ASNs and 23456 standing in for each 32-bit ASN
- 32-bit ASN world sees 16 and 32-bit ASNs

Example:

What has changed?

Two new BGP attributes:

AS4_PATH

Carries 32-bit ASN path info

AS4_AGGREGATOR

Carries 32-bit ASN aggregator info

Well-behaved BGP implementations will simply pass these along if they don't understand them

□ AS23456 (AS_TRANS)

What do they look like?

IPv4 prefix originated by AS196613 as4-7200#sh ip bgp 145.125.0.0/20 BGP routing table entry for 145.125.0.0/20, version 58734 Paths: (1 available, best #1, table default) asplain 131072 12654 196613 format 204.69.200.25 from 204.69.200.25 (204.69.200.25) Origin IGP, localpref 100, valid, internal, best IPv4 prefix originated by AS3.5 as4-7200#sh ip bgp 145.125.0.0/20 BGP routing table entry for 145.125.0.0/20, version 58734 Paths: (1 available, best #1, table default) asdot 2.0 12654 3.5 format 204.69.200.25 from 204.69.200.25 (204.69.200.25) Origin IGP, localpref 100, valid, internal, best

What do they look like?

IPv4 prefix originated by AS196613

But 16-bit AS world view:

```
BGP-view1>sh ip bgp 145.125.0.0/20
BGP routing table entry for 145.125.0.0/20, version
113382
Paths: (1 available, best #1, table Default-IP-Routing-
Table)
23456 12654 23456
204.69.200.25 from 204.69.200.25 (204.69.200.25)
Origin IGP, localpref 100, valid, external, best
Transition
AS
```

If 32-bit ASN not supported:

- Inability to distinguish between peer ASes using 32-bit ASNs
 - They will all be represented by AS23456
 - Could be problematic for transit provider's policy
 - Workaround: use BGP communities instead
- Inability to distinguish prefix's origin AS
 - How to tell whether origin is real or fake?
 - The real and fake both represented by AS23456
 - (There should be a better solution here!)

If 32-bit ASN not supported:

Incorrect NetFlow summaries:

- Prefixes from 32-bit ASNs will all be summarised under AS23456
- Traffic statistics need to be measured per prefix and aggregated
- Makes it hard to determine peerability of a neighbouring network
- Unintended filtering by peers and upstreams:
 - Even if IRR supports 32-bit ASNs, not all tools in use can support
 - ISP may not support 32-bit ASNs which are in the IRR and don't realise that AS23456 is the transition AS

Implementations (May 2011)

- □ Cisco IOS-XR 3.4 onwards
- Cisco IOS-XE 2.3 onwards
- Cisco IOS 12.0(32)S12, 12.4(24)T, 12.2SRE, 12.2(33)SXI1 onwards
- □ Cisco NX-OS 4.0(1) onwards
- Quagga 0.99.10 (patches for 0.99.6)
- OpenBGPd 4.2 (patches for 3.9 & 4.0)
- Juniper JunOSe 4.1.0 & JunOS 9.1 onwards
- Redback SEOS
- Force10 FTOS7.7.1 onwards
- http://as4.cluepon.net/index.php/Software_Support used to have a complete list

Route Flap Damping

Network Stability for the 1990s

Network Instability for the 21st Century!

Route Flap Damping

For many years, Route Flap Damping was a strongly recommended practice

Now it is strongly discouraged as it appears to cause far greater network instability than it cures

But first, the theory...

Route Flap Damping

Route flap

- Going up and down of path or change in attribute
 - BGP WITHDRAW followed by UPDATE = 1 flap
 - eBGP neighbour going down/up is NOT a flap
- Ripples through the entire Internet
- Wastes CPU
- Damping aims to reduce scope of route flap propagation

Route Flap Damping (continued)

Requirements

- Fast convergence for normal route changes
- History predicts future behaviour
- Suppress oscillating routes
- Advertise stable routes

Implementation described in RFC 2439

Operation

■ Add penalty (1000) for each flap

- Change in attribute gets penalty of 500
- Exponentially decay penalty
 - Half life determines decay rate
- Penalty above suppress-limit
 - Do not advertise route to BGP peers
- Penalty decayed below reuse-limit
 - Re-advertise route to BGP peers
 - Penalty reset to zero when it is half of reuselimit

Operation

Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- Controllable by at least:
 - Half-life
 - reuse-limit
 - suppress-limit
 - maximum suppress time

Configuration

- Implementations allow various policy control with flap damping
 - Fixed damping, same rate applied to all prefixes
 - Variable damping, different rates applied to different ranges of prefixes and prefix lengths

Route Flap Damping History

First implementations on the Internet by 1995

Vendor defaults too severe

- RIPE Routing Working Group recommendations in ripe-178, ripe-210, and ripe-229
- http://www.ripe.net/ripe/docs
- But many ISPs simply switched on the vendors' default values without thinking

Serious Problems:

- Route Flap Damping Exacerbates Internet Routing Convergence[®]
 - Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002
- "What is the sound of one route flapping?"
 - Tim Griffin, June 2002
- Various work on routing convergence by Craig Labovitz and Abha Ahuja a few years ago
- "Happy Packets"
 - Closely related work by Randy Bush et al

Problem 1:

• One path flaps:

- BGP speakers pick next best path, announce to all peers, flap counter incremented
- Those peers see change in best path, flap counter incremented
- After a few hops, peers see multiple changes simply caused by a single flap → prefix is suppressed

Problem 2:

Different BGP implementations have different transit time for prefixes

- Some hold onto prefix for some time before advertising
- Others advertise immediately

■ Race to the finish line causes appearance of flapping, caused by a simple announcement or path change → prefix is suppressed

Solution:

- Misconfigured Route Flap Damping will seriously impact access to:
 - Your network and
 - The Internet
- More background contained in RIPE Routing Working Group document:
 - www.ripe.net/ripe/docs/ripe-378
- Recommendations now in:
 - www.rfc-editor.org/rfc/rfc7196.txt and www.ripe.net/ ripe/docs/ripe-580

BGP for Internet Service Providers

BGP Basics
Scaling BGP
Using Communities
Deploying BGP in an ISP network

Service Provider use of Communities

Some examples of how ISPs make life easier for themselves

BGP Communities

- Another ISP "scaling technique"
- Prefixes are grouped into different "classes" or communities within the ISP network
- Each community means a different thing, has a different result in the ISP network

BGP Communities

Communities are generally set at the edge of the ISP network

- Customer edge: customer prefixes belong to different communities depending on the services they have purchased
- Internet edge: transit provider prefixes belong to difference communities, depending on the loadsharing or traffic engineering requirements of the local ISP, or what the demands from its BGP customers might be

Two simple examples follow to explain the concept

Community Example: Customer Edge

This demonstrates how communities might be used at the customer edge of an ISP network

ISP has three connections to the Internet:

- IXP connection, for local peers
- Private peering with a competing ISP in the region
- Transit provider, who provides visibility to the entire Internet

Customers have the option of purchasing combinations of the above connections

Community Example: Customer Edge

Community assignments:

- IXP connection: community 100:2100
- Private peer: community 100:2200
- Customer who buys local connectivity (via IXP) is put in community 100:2100
- Customer who buys peer connectivity is put in community 100:2200
- Customer who wants both IXP and peer connectivity is put in 100:2100 and 100:2200
- Customer who wants "the Internet" has no community set
 - We are going to announce his prefix everywhere

Community Example: Customer Edge

No need to alter filters at the network border when adding a new customer

- New customer simply is added to the appropriate community
 - Border filters already in place take care of announcements
 - \Rightarrow Ease of operation!

Community Example: Internet Edge

This demonstrates how communities might be used at the peering edge of an ISP network

■ ISP has four types of BGP peers:

- Customer
- IXP peer
- Private peer
- Transit provider
- The prefixes received from each can be classified using communities
- Customers can opt to receive any or all of the above

Community Example: Internet Edge

Community assignments:

- Customer prefix: community 100:3000
- IXP prefix: community 100:3100
- Private peer prefix: community 100:3200
- BGP customer who buys local connectivity gets 100:3000
- BGP customer who buys local and IXP connectivity receives community 100:3000 and 100:3100
- BGP customer who buys full peer connectivity receives community 100:3000, 100:3100, and 100:3200
- Customer who wants "the Internet" gets everything
 - Gets default route originated by aggregation router
 - Or pays money to get the full BGP table!

Community Example: Internet Edge

No need to create customised filters when adding customers

- Border router already sets communities
- Installation engineers pick the appropriate community set when establishing the customer BGP session

• \Rightarrow Ease of operation!

Community Example – Summary

- Two examples of customer edge and internet edge can be combined to form a simple community solution for ISP prefix policy control
- More experienced operators tend to have more sophisticated options available
 - Advice is to start with the easy examples given, and then proceed onwards as experience is gained

ISP BGP Communities

- There are no recommended ISP BGP communities apart from
 - RFC1998
 - The five standard communities
 - www.iana.org/assignments/bgp-well-known-communities

Efforts have been made to document from time to time

- totem.info.ucl.ac.be/publications/papers-elec-versions/draftquoitin-bgp-comm-survey-00.pdf
- But so far... nothing more... ⊗
- Collection of ISP communities at www.onesc.net/communities
- NANOG Tutorial: www.nanog.org/meetings/nanog40/ presentations/BGPcommunities.pdf
- ISP policy is usually published
 - On the ISP's website
 - Referenced in the AS Object in the IRR

.

sprint.net

Ċ

Ĥ

IP/MPLS Products from Sprint

WHAT YOU CAN CONTROL

AS-PATH PREPENDS

Sprint allows customers to use AS-path prepending to adjust route preference on the network. Such prepending will be received and passed on properly without notifying Sprint of your change in announcements.

Additionally, Sprint will prepend AS1239 to eBGP sessions with certain autonomous systems depending on a received community. Currently, the following ASes are supported: 1668, 209, 2914, 3300, 3356, 3549, 3561, 4635, 701, 7018, 702 and 8220.

String	Resulting AS Path to ASXXX	
65000:XXX	Do not advertise to ASXXX	
65001:XXX	1239 (default)	
65002:XXX	1239 1239	
65003:XXX	1239 1239 1239	SP Evamples: Sprint
65004:XXX	1239 1239 1239 1239	Si Examples: Sprine
String	Resulting AS Path to ASXXX in Asia	
65070:XXX	Do not advertise to ASXXX	
65071:XXX	1239 (default)	
65072:XXX	1239 1239	
65073:XXX	1239 1239 1239	
65074:XXX	1239 1239 1239 1239	
String	Resulting AS Path to ASXXX in Europe	
65050:XXX	Do not advertise to ASXXX	
65051:XXX	1239 (default)	
65052:XXX	1239 1239	
65053:XXX	1239 1239 1239	More info at
65054:XXX	1239 1239 1239 1239	https://www.sprint.pot/index.php?p=policy_bap
String	Resulting AS Path to ASXXX in North Ame	erica
String 65010:XXX	Resulting AS Path to ASXXX in North Ame	erica

(☆)()≡

us.ntt.net

Policies & Procedures - Routing Policies - NTT America - www.us.ntt.net

BGP customer communities

Customers wanting to alter local preference on their routes.

NTT Communications BGP customers may choose to affect our local preference on their routes by marking their routes with the following communities:

Community	Local-pret	f Description
(default)	120	customer
65520:nnnn	50	only within country <nnnn> (see country list below)</nnnn>
65530:nnnn	50	only within region <nnnn> (see region list below)</nnnn>
2914:435	50	only beyond the connected country
2914:436	50	only beyond the connected region
2914:450	96	customer fallback
2914:460	98	peer backup
2914:470	100	peer
2914:480	110	customer backup
2914:490	120	customer default
2914:666		blackhole

ISP Example: NTT

Customers wanting to alter their route announcements to other customers.

NTT Communications BGP customers may choose to prepend to all other NTT Communications BGP customers with the following communities:

Communit	y Description
2914:411	prepends o/b to customer 1x
2914:412	prepends o/b to customer 2x
2914:413	prepends o/b to customer 3x

Customers wanting to alter their route announcements to peers.

NTT Communications BGP customers may choose to prepend to all NTT Communications peers with the following communities:

Community	Description
2914:421	prepends o/b to peer 1x
2914:422	prepends o/b to peer 2x
2914:423	prepends o/b to peer 3x
2914:429	do not advertise to any peer
2914:439	do not advertise to any peer outside region

More info at www.us.ntt.net/ about/policy/routing.cfm

Note: 2914 is the ASN prepend in all cases. If used, 654xx:nnn overrides 655xx:nnn and 2914:429, 655xx:nnn overrides the 2914:42x communities.

Customers wanting to alter their route announcements to selected peers.

NTT Communications BGP customers may choose to prepend to selected peers with the following communities, where nnn is the peer's ASN:

ISP Example: Verizon Europe

<pre>aut-num: descr: <snip> remarks:</snip></pre>	AS702 Verizon Business EMEA - Commercial IP service provider in Europe				
	Verizon Business filters out inbound prefixes longer than /24. We also filter any networks within AS702:RS-INBOUND-FILTER.				
	VzBi uses the following communities with its customers: 702:80 Set Local Pref 80 within AS702 702:120 Set Local Pref 120 within AS702 702:20 Announce only to VzBi AS'es and VzBi customers 702:30 Keep within Europe, don't announce to other VzBi AS's 702:1 Prepend AS702 once at edges of VzBi to Peers 702:2 Prepend AS702 twice at edges of VzBi to Peers 702:3 Prepend AS702 thrice at edges of VzBi to Peers				
	Advanced communities for customers 702:7020 Do not announce to AS702 peers with a scope of National but advertise to Global Peers, European Peers and VzBi customers. 702:7001 Prepend AS702 once at edges of VzBi to AS702 peers with a scope of National. 702:7002 Prepend AS702 twice at edges of VzBi to AS702 peers with a scope of National.				
<snip></snip>					

ISP Example: Telia

aut-num:	AS1299				
descr:	TeliaSonera International Carrier				
<snip></snip>					
remarks:					
remarks:	BGP COMMUNITY SUPPORT FOR AS1299 TRANSIT CUSTOMERS:				
remarks:					
remarks:	Community Action (default local pref 200)				
remarks:					
remarks:	1299:50 Set local pref 50 within AS1299 (lowest possible)				
remarks:	1299:150 Set local pref 150 within AS1299 (equal to peer, backup)				
remarks:					
remarks:	European peers				
remarks:	Community Action				
remarks:					
remarks:	1299:200x All peers Europe incl:				
remarks:					
remarks:	1299:250x Sprint/1239				
remarks:	1299:251x Savvis/3561				
remarks:	1299:252x NTT/2914				
remarks:	1299:253x Zayo/Abovenet/6461				
remarks:	1299:254x FT/5511				
remarks:	1299:255x GBLX/3549 And many				
remarks:	1299:256x Level3/3356many morel				
<snip></snip>					
remarks:	Where x is number of prepends $(x=0,1,2,3)$ or do NOT announce $(x=9)$				

ISP Example: BT Ignite

aut-num: descr:	AS5400 BT Ignite European Backbone			
<snip></snip>				
remarks:	The follow	ing BGP communities can be set	by BT	
remarks:	BGP custom	ers to affect announcements to	major peers.	
remarks:				
remarks:	5400:NXXX			
remarks:	N=1	not announce		
remarks:	N=2	prepend an extra "5400 5400" o	n announcement	
remarks:	Valid value	es for XXX:		
remarks:	000	All peers and transits		
remarks:	500	All transits		
remarks:	503	Level3 AS3356		
remarks:	509	Telia AS1299		
remarks:	510	NTT Verio AS2914		
remarks:	002	Sprint AS1239		
remarks:	003	Savvis AS3561		
remarks:	004	C&W AS1273		
remarks:	005	Verizon EMEA AS702		
remarks:	014	DTAG AS3320		
remarks:	016	Opentransit AS5511		
remarks:	018	GlobeInternet Tata AS6453	And many	
remarks:	023	Tinet AS3257	And many	
remarks:	027	Telia AS1299	more!	
remarks:	045	Telecom Italia AS6762		
remarks:	073	Eurorings AS286	J	
remarks:	169	Cogent AS174		
<snip></snip>				

ISP Example: Level3

aut-num:	AS3356
descr: <snip></snip>	Level 3 Communications
remarks:	
remarks:	customer traffic engineering communities - Suppression
remarks:	
remarks:	64960:XXX - announce to AS XXX if 65000:0
remarks:	65000:0 - announce to customers but not to peers
remarks:	65000:XXX - do not announce at peerings to AS XXX
remarks:	
remarks:	customer traffic engineering communities - Prepending
remarks:	
remarks:	65001:0 - prepend once to all peers
remarks:	65001:XXX - prepend once at peerings to AS XXX
remarks:	65002:0 - prepend twice to all peers
remarks:	65002:XXX - prepend twice at peerings to AS XXX
<snip></snip>	
remarks:	
remarks:	customer traffic engineering communities - LocalPref
remarks:	
remarks:	3356:70 - set local preference to 70
remarks:	3356:80 - set local preference to 80 And many
remarks:	3356:90 - set local preference to 90 morel
remarks:	
remarks:	customer traffic engineering communities - Blackhole
remarks:	/
remarks:	3356:9999 - blackhole (discard) traffic
<snip></snip>	

BGP for Internet Service Providers

BGP Basics
Scaling BGP
Using Communities
Deploying BGP in an ISP network

Deploying BGP in an ISP Network

Okay, so we've learned all about BGP now; how do we use it on our network?? Deploying BGP

The role of IGPs and iBGP
Aggregation
Receiving Prefixes
Configuration Tips

The role of IGP and iBGP

Ships in the night? Or Good foundations?

BGP versus OSPF/ISIS

Internal Routing Protocols (IGPs)

- Examples are ISIS and OSPF
- Used for carrying infrastructure addresses
- NOT used for carrying Internet prefixes or customer prefixes
- Design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

BGP versus OSPF/ISIS

BGP is used

- Internally (iBGP)
- Externally (eBGP)
- iBGP is used to carry:
 - Some/all Internet prefixes across backbone
 - Customer prefixes
- eBGP is used to:
 - Exchange prefixes with other ASes
 - Implement routing policy

BGP/IGP model used in ISP networks

Model representation

BGP versus OSPF/ISIS

DO NOT:

Distribute BGP prefixes into an IGP

- Distribute IGP routes into BGP
- Use an IGP to carry customer prefixes

YOUR NETWORK WILL NOT SCALE

Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes
 - Don't ever use IGP
- Point static route to customer interface
- Enter network into BGP process
 - Ensure that implementation options are used so that the prefix always remains in iBGP, regardless of state of interface
 - i.e. avoid iBGP flaps caused by interface flaps

Quality or Quantity?

Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network
- Subprefixes of this aggregate may be:
 - Used internally in the ISP network
 - Announced to other ASes to aid with multihoming
- Too many operators are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table
 - January 2016: 318000 /24s in IPv4 table of 580000 prefixes
- The same is happening for /48s with IPv6
 - January 2016: 11800 /48s in IPv6 table of 25800 prefixes

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announces customers' individual networks to the Internet

Aggregation – Bad Example

Customer link goes down

- Their /23 network becomes unreachable
- /23 is withdrawn from AS100's iBGP
- Their ISP doesn't aggregate its /19 network block
 - /23 network withdrawal announced to peers
 - starts rippling through the Internet
 - added load on all Internet backbone routers as network is removed from routing table

- Customer link returns

- Their /23 network is now visible to their ISP
- Their /23 network is readvertised to peers
- Starts rippling through Internet
- Load on Internet backbone routers as network is reinserted into routing table
- Some ISP's suppress the flaps
- Internet may take 10-20 min or longer to be visible
- Where is the Quality of Service???

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announced /19 aggregate to the Internet

Aggregation – Good Example

- Customer link goes down
 - their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- /19 aggregate is still being announced
 - no BGP hold down problems
 - no BGP propagation delays
 - no damping by other ISPs

- Customer link returns
 - Their /23 network is visible again
 - The /23 is re-injected into AS100's iBGP
 - The whole Internet becomes visible immediately
 - Customer has Quality of Service perception

Aggregation – Summary

Good example is what everyone should do!

- Adds to Internet stability
- Reduces size of routing table
- Reduces routing churn
- Improves Internet QoS for everyone
- Bad example is what too many still do!
 - Why? Lack of knowledge?
 - Laziness?

Separation of iBGP and eBGP

- Many ISPs do not understand the importance of separating iBGP and eBGP
 - iBGP is where all customer prefixes are carried
 - eBGP is used for announcing aggregate to Internet and for Traffic Engineering
- Do NOT do traffic engineering with customer originated iBGP prefixes
 - Leads to instability similar to that mentioned in the earlier bad example
 - Even though aggregate is announced, a flapping subprefix will lead to instability for the customer concerned

 Generate traffic engineering prefixes on the Border Router

The Internet Today (January 2016)

Current Internet Routing Table Statistics

579519
213882
282120
189985
317953
52493

- (maximum aggregation is calculated by Origin AS)
- (unique prefixes > max aggregation means that operators are announcing aggregates from their blocks without a covering aggregate)

Efforts to improve aggregation

□ The CIDR Report

- Initiated and operated for many years by Tony Bates
- Now combined with Geoff Huston's routing analysis
 - www.cidr-report.org
 - (covers both IPv4 and IPv6 BGP tables)
- Results e-mailed on a weekly basis to most operations lists around the world
- Lists the top 30 service providers who could do better at aggregating
- RIPE Routing WG aggregation recommendations
 - IPv4: RIPE-399 www.ripe.net/ripe/docs/ripe-399.html
 - IPv6: RIPE-532 www.ripe.net/ripe/docs/ripe-532.html

Efforts to Improve Aggregation The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse

$\bullet \bullet \bullet \checkmark \square$	O	cidr-report.org	Ċ	(1)
		CIDR Report		+

Status Summary

Table History

Date	Prefixes	CIDR Aggregated
14-02-16	591822	332542
15-02-16	592264	333490
16-02-16	592694	333728
17-02-16	592790	334264
18-02-16	593076	334817
19-02-16	593326	335080
20-02-16	594134	335577
21-02-16	594401	335398

Plot: BGP Table Size

AS Summary

- 53083 Number of ASes in routing system
- 20861 Number of ASes announcing only one prefix
- Largest number of prefixes announced by an AS AS4538: ERX-CERNET-BKB China Education and Research Network Center,CN Largest address span announced by
 - an AS (/32s) AS4134: CHINANET-BACKBONE No.31, Jin-rong Street, CN

53120 53100 53000 2 53020 53000 53000 53000 53000 53000 52980 Sun_14/2 Mon_15/2 Tue_16/2 Wed_17/2 Thu_18/2 Fri_19/2 Sat_20/2 Sun_21/2 Date

Plot: AS count

Plot: Average announcements per origin AS Report: ASes ordered by originating address span Report: ASes ordered by transit address span Report: Autonomous System number-to-name mapping (from Registry WHOIS data)

	cidr-report.org	Ċ	(1)
	CIDR Report		+

Aggregation Summary

The algorithm used in this report proposes aggregation only when there is a precise match using AS path so as to preserve traffic transit policies. Aggregation is also proposed across non-advertised address space ('holes').

21Fel	b16				
ASnum	NetsNow	NetsAggr	NetGain	% Gain	⁶ Description
Table	594016	335258	258758	43.6%	All ASes
AC7545	2100				TPC INTERNET AD TPC Tolocom Limited All
A57545	5199	337	2862	89.5%	EDV CEDNET BI/D Chips Education and Descarch Naturally Conter CN
A54536	2000	2825	2786	49.78	EKA-CERINE I-DRD Chilina Education and Research Network Center, CN
AS1/9/4	2908	271	2637	90.7%	TELKOMINET-ASZ-AP PT Telekomunikasi Indonesia,ID
AS39891	2515	22	2493	99.1%	ALJAWWALSTC-AS Saudi Telecom Company JSC,SA
AS6389	2412	45	2367	98.1%	BELLSOUTH-NET-BLK - BellSouth.net Inc.,US
AS4766	3120	1117	2003	64.2%	KIXS-AS-KR Korea Telecom,KR
AS9394	2068	353	1715	82.9%	CTTNET China TieTong Telecommunications Corporation, CN
AS4755	2086	533	1553	74.4%	TATACOMM-AS TATA Communications formerly VSNL is Leading ISP,IN
AS6983	1694	239	1455	85.9%	ITCDELTA - Earthlink, Inc.,US
AS22773	3293	1869	1424	43.2%	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.,US
AS11830	1449	191	1258	86.8%	Instituto Costarricense de Electricidad y Telecom.,CR
AS18566	2212	979	1233	55.7%	MEGAPATH5-US - MegaPath Corporation, US
AS9808	1837	612	1225	66.7%	CMNET-GD Guangdong Mobile Communication Co.Ltd.,CN
AS4323	1589	396	1193	75.1%	TWTC - tw telecom holdings, inc.,US
AS7552	1443	263	1180	81.8%	VIETEL-AS-AP Viettel Corporation, VN
AS38285	1165	20	1145	98.3%	M2TELECOMMUNICATIONS-AU M2 Telecommunications Group Ltd,AU
AS8452	2687	1556	1131	42.1%	TE-AS TE-AS.EG
AS10620	3429	2304	1125	32.8%	Telmex Colombia S.ACO
AS4788	1457	360	1097	75.3%	TMNET-AS-AP TM Net. Internet Service Provider.MY
AS8151	2168	1084	1084	50.0%	Uninet S.A. de C.V. MX
//00101		1004	1004	50.00	CHINA169-B1 CNCGROUP IP network China169 Beijing Province
AS4808	1627	552	1075	66.1%	Network CN
AS9498	1426	353	1073	75 29	BBII-AP BHARTI Airtel Ltd IN
133430		555	10/5	/3.20	CENTURYI INK-LEGACY-LIGHTCORE - CenturyTel Internet Holdings
AS22561	1184	221	963	81.3%	IncUS
AS8551	1445	499	946	65.5%	BEZEQ-INTERNATIONAL-AS Bezeg International-Ltd,IL
AS7738	994	79	915	92.1%	Telemar Norte Leste S.A., BR
AS7303	1590	705	885	55.7%	Telecom Argentina S.A., AR
AC28573	1040	173	0.67	02.40	CIADO SA RD

			cidr-report.org	Ċ	(†
			CIDR Report		+
Top 20 A	dded Rou	tes this week per Origina	ating AS		
· ·			2		
Prefixes	ASnum	AS Description			
495	AS6849	UKRTELNET PJSC UKRTELE	COM,UA		
405	AS5	SYMBOLICS - Symbolics, In	nc.,US		
380	AS4	ISI-AS - University of Sout	hern California,US		
283	AS45899	VNPT-AS-VN VNPT Corp,VN	l		
207	AS6147	Telefonica del Peru S.A.A.,			
199	AS3	MIT-GATEWAYS - Massachu	usetts Institute of Technology,L	JS	
198	AS2	UDEL-DCN - University of L	Delaware, US		
119	AS45334	AIRCEL-AS-AP Disnnet Wire	eless Limited, IN		
91	A54788	IMNET-AS-AP IM Net, Inte	tion Systems Inc. US		
81	A50		tion Systems Inc., US		
/1	AS13399	SINET-AS Posoarch Organi	zation of Information and Syst	ome National Instituto	of Informatics 1P
61	AS10026	PACNET Pacpet Clobal Ltd	HV		JI Informatics, JP
61	AS10020	EVEL3 - Level 3 Communi	ications Inc. US		
59	AS37027	SIMBANET-AS TZ			
52	AS38710	WORLDCALL-AS-LHR World	Icall Broadband Limited PK		
49	AS24651	IVBALTICOM-AS ISC BALTI			
49	AS53240	Net Onze Provedor de Aces	so a Internet Ltda.BR		
39	AS9829	BSNL-NIB National Internet	t Backbone.IN		
33	AS8452	TE-AS TE-AS,EG			
Top 20 M	Vithdrawn	Routes this week per Or	riginating AS		
100 20 1	- Charawi	Routes this week per of	Iginating AS		
Prefixes	ASnum	AS Description			
-389	AS35908	VPLSNET - Krypt Technolog	aies,US		
-251	AS4	ISI-AS - University of Sout	hern California,US		
-220	AS15468	KLGELECS-AS PJSC Rostele	ecom,RU		
-134	AS3216	SOVAM-AS OJSC "Vimpelco	om",RU		
-117	AS10201	DWL-AS-IN Dishnet Wireles	ss Limited. Broadband Wireless	5,IN	
-115	AS3	MIT-GATEWAYS - Massachu	usetts Institute of Technology,L	JS	
-82	AS2	UDEL-DCN - University of [Delaware,US		
-69	AS27668	ETAPA EP,EC			
-68	AS8452	TE-AS TE-AS,EG			
-53	AS28331	PaintWeb Internet Ltda,BR			
-47	AS9394	CTTNET China TieTong Tele	communications Corporation,C	CN	
-46	AS13118	ASN-YARTELECOM PJSC Ro	stelecom,RU		
-46	AS7381	SUNGARDRS - SunGard Av	allability Services LP,US		
-39	AS11259	ANGOLATELECOM,AO			

		cidr-report.org	Ċ	(1)
		CIDR Report		+
Report: Withdrawn	Route count per Origination	ng AS		

More Specifics

A list of route advertisements that appear to be more specific than the original Class-based prefix mask, or more specific than the registry allocation size.

Top 20 ASes advertising more specific prefixes

More Specifics	Total Prefixes	ASnum	AS Description
9824	12357	AS4	ISI-AS - University of Southern California, US
9043	13044	AS3	MIT-GATEWAYS - Massachusetts Institute of Technology, US
8339	10027	AS2	UDEL-DCN - University of Delaware, US
5487	5611	AS4538	ERX-CERNET-BKB China Education and Research Network Center, CN
3429	3429	AS10620	Telmex Colombia S.A.,CO
3219	3293	AS22773	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.,US
3106	3199	AS7545	TPG-INTERNET-AP TPG Telecom Limited,AU
3022	3120	AS4766	KIXS-AS-KR Korea Telecom,KR
2896	2908	AS17974	TELKOMNET-AS2-AP PT Telekomunikasi Indonesia,ID
2674	2687	AS8452	TE-AS TE-AS,EG
2512	2515	AS39891	ALJAWWALSTC-AS Saudi Telecom Company JSC,SA
2386	2386	AS20940	AKAMAI-ASN1 Akamai International B.V., US
2386	2412	AS6389	BELLSOUTH-NET-BLK - BellSouth.net Inc.,US
2194	2212	AS18566	MEGAPATH5-US - MegaPath Corporation, US
2104	2168	AS8151	Uninet S.A. de C.V.,MX
2066	2086	AS4755	TATACOMM-AS TATA Communications formerly VSNL is Leading ISP, IN
2054	2068	AS9394	CTTNET China TieTong Telecommunications Corporation, CN
1920	1946	AS34984	TELLCOM-AS TELLCOM ILETISIM HIZMETLERI A.S.,TR
1902	2392	AS9829	BSNL-NIB National Internet Backbone,IN
1879	1912	AS20115	CHARTER-NET-HKY-NC - Charter Communications, US

Report: ASes ordered by number of more specific prefixes Report: More Specific prefix list (by AS) Report: More Specific prefix list (ordered by prefix)

Possible Bogus Routes and AS Announcements

$\bullet \bullet \bullet \checkmark \triangleright \blacksquare$		=	cidr-report.org	Ċ	(Î)	D	
			AS Report			+	
Announced Drefives							

Announced Prefixes

Rank	AS	Type	Originate Addr Spa	ce (pfx)	Trans	it Addr space	(pfx)	Description		
21	AS6389		ORG+TRN Originate:	24733952	/7.44	Transit:	482560	/13.12 BELLSOUTH-NET-BLK	- BellSouth.net	Inc.,US

Aggregation Suggestions

Filter: Aggregates, Specifics

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

Rank AS	AS Name		Current W	thdw Aggte	Annce	Redctn	8
6 <u>AS6389</u>	BELLSOUTH-NET-BLK - BellSouth.net	Inc.,US	2412 2	2371 4	45	2367	98.13%
Prefix	AS Path	Aggre	gation Sug	gestion			
12.81.90.0/23	4777 2497 7018 6389						
12.81.120.0/24	4777 2497 7018 6389						
12.83.5.0/24	4777 2497 7018 6389						
12.83.7.0/24	4777 2497 7018 6389						
65.0.0.0/12	4777 2497 7018 6389						
65.0.0.0/18	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	≥ 65.0.0.0/12	4777	2497 701	.8 6389
65.0.0.0/19	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	.8 6389
65.0.40.0/22	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	.8 6389
65.0.50.0/23	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.0.64.0/18	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.0.128.0/18	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.0.192.0/19	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.0.224.0/19	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.1.0.0/19	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.1.32.0/19	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.1.64.0/19	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.1.224.0/20	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.1.240.0/20	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.2.0.0/16	4777 2497 7018 6389 - Withdray	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.2.0.0/17	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.2.128.0/17	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.3.224.0/19	4777 2497 7018 6389 - Withdray	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.4.64.0/18	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.4.192.0/18	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.5.1.0/24	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.5.12.0/22	4777 2497 7018 6389 - Withdrav	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.5.16.0/22	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.5.20.0/23	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	.8 6389
65.5.21.0/24	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389
65.5.22.0/23	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.5.24.0/22	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.5.28.0/22	4777 2497 7018 6389 - Withdraw	vn - matchin	g aggregate	€ 65.0.0.0/12	4777	2497 701	8 6389
65.5.32.0/20	4777 2497 7018 6389 - Withdray	vn - matchin	g aggregate	e 65.0.0.0/12	4777	2497 701	8 6389

		cidr-report.org	Ċ	(1)			
		AS Report		+			
Announced Prefixes							

Rank	AS	Туре	Originate Addr Spac	e (pfx)	Trans	it Addr space	(pfx)	Description	
200	AS18566		ORG+TRN Originate:	2853120	/10.56	Transit:	4096	/20.00 MEGAPATH5-US - Meg	gaPath Corporation,US

Aggregation Suggestions

Filter: Aggregates, Specifics

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

Rank	AS	AS Name Current Wthdw Aggte Annce Redctn %	
13	AS18566	MEGAPATH5-US - MegaPath Corporation,US 2212 1466 233 979 1233 55.74%	
Dree	E ÷	AC Dath Aggregation Cuggostion	
Pres	C 1 CO 0/22	AS Path Aggregation Suggestion	
64.0	5.160.0/23	4/// 249/ 2020 10000	
64.0	5.164.0/23	4/// 249/ 3330 10300 4777 2407 3030 10566 + Appendence of 64 6 166 0/24 (4777 2407 2020 10566) and 64 6 167 0/24 (4777 24	07
64.0	5.166.0/23	4777 2497 2020 10500 + Announce - aggregate of 04.0.100.0724 (4777 2497 2020 10500) and 04.0.107.0724 (4777 2497 2020 10565)	91
64.0	5 167 0/24	4777 2497 2020 10000 - Withdrawn - aggregated with 04.0.107.0724 (4777 2407 2020 1000) 4777 2407 2020 10566 - Withdrawn - aggregated with 64.6 166 0/24 (4777 2407 2020 10566)	
64.1	50 206 0/23	4777 2427 2020 10500 - Withdrawn - dygregated With 04.0.100.0/24 (4777 2427 2020 10500)	
64.	51 126 0/23	4777 2497 2020 10500	
64 .	81 16 0/22	4777 2497 3356 18566	
64.0	81.20.0/22	4777 2497 2828 18566	
64.0	81.22.0/24	4777 2497 3356 18566	
64.1	81.24.0/21	4777 2497 3356 18566 + Appounce - aggregate of 64.81.24.0/22 (4777 2497 3356 18566) and 64.81.28.0/22 (4777 24	97
64.1	81.24.0/22	4777 2497 3356 18566 - Withdrawn - aggregated with 64.81.28. (777 2497 3356 18566)	
64.1	81.28.0/22	4777 2497 3356 18566 - Withdrawn - aggregated with 64.81.24.0/22 (4777 2497 3356 18566)	
64.1	81.32.0/20	4777 2497 701 1299 18566	
64.1	81.32.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.1	81.33.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.1	81.34.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.1	81.35.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.1	81.36.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.1	81.37.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.8	81.38.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.8	81.39.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.1	81.40.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.1	81.44.0/24	4777 2497 701 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 4777 2497 701 1299 18566	
64.8	81.48.0/20	4777 2497 3356 18566	
64.1	81.48.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	
64.1	81.49.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	
64.8	81.50.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	
64.8	81.51.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	
64.8	81.52.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	
64.1	81.53.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	
64.1	81.54.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	
64.1	81.55.0/24	4777 2497 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 4777 2497 3356 18566	

Importance of Aggregation

Size of routing table

- Router Memory is not so much of a problem as it was in the 1990s
- Routers can be specified to carry 1 million+ prefixes
- Convergence of the Routing System
 - This is a problem
 - Bigger table takes longer for CPU to process
 - BGP updates take longer to deal with
 - BGP Instability Report tracks routing system update activity
 - http://bgpupdates.potaroo.net/instability/bgpupd.html

.

The BGP Instability Report

Ċ.

The BGP Instability Report

The BGP Instability Report is updated daily. This report was generated on 20 February 2016 06:25 (UTC+1000)

50 Most active ASes for the past 7 days

RANK	ASN	UPDs	%	Prefixes	UPDs/Prefix	AS NAME
1	9829	205255	7.52%	2388	85.95	BSNL-NIB National Internet Backbone,IN
2	35908	49433	1.81%	741	66.71	VPLSNET - Krypt Technologies,US
3	13118	25214	0.92%	97	259.94	ASN-YARTELECOM PJSC Rostelecom,RU
4	39891	25028	0.92%	2515	9.95	ALJAWWALSTC-AS Saudi Telecom Company JSC,SA
5	9299	23290	0.85%	472	49.34	IPG-AS-AP Philippine Long Distance Telephone Company,PH
6	134438	21367	0.78%	1	21367.00	AIRAAIFUL-AS-AP Aira & Aiful Public Company Limited,TH
7	23966	17906	0.66%	302	59.29	LDN-AS-PK LINKdotNET Telecom Limited,PK
8	4788	17745	0.65%	1497	11.85	TMNET-AS-AP TM Net, Internet Service Provider,MY
9	132084	17474	0.64%	28	624.07	OPSOURCE-AP 5201 Great America Pkwy # 120,AU
10	36903	16822	0.62%	584	28.80	MT-MPLS,MA
11	56636	16233	0.60%	1	16233.00	ASVEDARU VEDA Ltd.,RU
12	45899	15410	0.56%	2107	7.31	VNPT-AS-VN VNPT Corp,VN
13	197426	15102	0.55%	174	86.79	BITCANAL-AS Joao Carlos de Almeida Silveira trading as Bitcanal,PT
14	8151	14546	0.53%	2179	6.68	Uninet S.A. de C.V.,MX
15	55685	14541	0.53%	19	765.32	JLM-AS-ID PT Jala Lintas Media,ID
16	5976	14307	0.52%	113	126.61	DNIC-ASBLK-05800-06055 - DoD Network Information Center, US
17	9021	14221	0.52%	108	131.68	ISNET Is Net Elektonik Bilgi Uretim Dagitim Ticaret ve Iletisim Hizmetleri A.S., TR
18	15468	13665	0.50%	265	51.57	KLGELECS-AS PJSC Rostelecom,RU
19	38197	13067	0.48%	1461	8.94	SUNHK-DATA-AS-AP Sun Network (Hong Kong) Limited,HK
20	53934	13013	0.48%	2	6506.50	SZW-INC - SUB-ZERO GROUP, INC.,US
21	8452	12605	0.46%	2775	4.54	TE-AS TE-AS,EG
22	17762	12556	0.46%	516	24.33	HTIL-TTML-IN-AP Tata Teleservices Maharashtra Ltd,IN
23	647	11832	0.43%	130	91.02	DNIC-ASBLK-00616-00665 - DoD Network Information Center, US
24	131090	11830	0.43%	391	30.26	CAT-IDC-4BYTENET-AS-AP CAT TELECOM Public Company Ltd,CAT,TH
25	24560	11587	0.42%	1385	8.37	AIRTELBROADBAND-AS-AP Bharti Airtel Ltd., Telemedia Services, IN

$\bullet \bullet \bullet \checkmark \land \blacksquare$

O .

bgpupdates.potaroo.net

The BGP Instability Report

Ċ

₫ (

50 Most active Prefixes for the past 7 days

RANK	PREFIX	UPDs	%	Origin AS AS NAME
1	93.181.192.0/19	21597	0.75%	13118 ASN-YARTELECOM PJSC Rostelecom,RU
2	110.170.17.0/24	21367	0.74%	134438 AIRAAIFUL-AS-AP Aira & Aiful Public Company Limited,TH
3	168.128.73.0/24	17438	0.61%	132084 OPSOURCE-AP 5201 Great America Pkwy # 120,AU
4	195.128.159.0/24	16233	0.56%	56636 ASVEDARU VEDA Ltd.,RU
5	192.101.5.0/24	13013	0.45%	53934 SZW-INC - SUB-ZERO GROUP, INC.,US
6	61.7.155.0/24	11730	0.41%	131090 CAT-IDC-4BYTENET-AS-AP CAT TELECOM Public Company Ltd,CAT,TH
7	182.23.47.0/24	9387	0.33%	4800 LINTASARTA-AS-AP Network Access Provider and Internet Service Provider,ID
8	202.56.215.0/24	8481	0.29%	24560 AIRTELBROADBAND-AS-AP Bharti Airtel Ltd., Telemedia Services,IN
9	66.19.194.0/24	6838	0.24%	6316 AS-PAETEC-NET - PaeTec Communications, Inc.,US
10	103.227.220.0/24	5593	0.19%	55685 JLM-AS-ID PT Jala Lintas Media,ID
11	103.227.222.0/24	5593	0.19%	55685 JLM-AS-ID PT Jala Lintas Media,ID
12	103.225.175.0/24	5543	0.19%	59272 IDNIC-LST-AS-ID PT Lawang Sewu Teknologi,ID
13	203.55.16.0/24	5076	0.18%	10113 EFTEL-AS-AP Eftel Limited.,AU
14	67.198.206.0/24	4345	0.15%	35908 VPLSNET - Krypt Technologies,US
15	67.198.204.0/24	4248	0.15%	35908 VPLSNET - Krypt Technologies,US
16	203.252.142.0/24	4195	0.15%	9459 ASKONKUK Konkuk University,KR
17	94.73.56.0/21	3783	0.13%	42081 SPEEDY-NET-AS Speedy net AD,BG
18	67.198.175.0/24	3465	0.12%	35908 VPLSNET - Krypt Technologies,US 359098
19	67.198.128.0/24	3438	0.12%	35908 VPLSNET - Krypt Technologies,US
20	103.60.182.0/24	3355	0.12%	55685 JLM-AS-ID PT Jala Lintas Media,ID
21	67.198.129.0/24	3282	0.11%	35908 VPLSNET - Krypt Technologies,US 359098
22	67.198.144.0/24	3206	0.11%	35908 VPLSNET - Krypt Technologies,US
23	148.208.214.0/24	3156	0.11%	8151 Uninet S.A. de C.V.,MX
24	67.198.140.0/24	3105	0.11%	35908 VPLSNET - Krypt Technologies,US
25	67.198.134.0/24	2905	0.10%	35908 VPLSNET - Krypt Technologies,US
26	67.198.137.0/24	2888	0.10%	35908 VPLSNET - Krypt Technologies,US
27	168.243.163.0/24	2823	0.10%	27750 Cooperación Latino Americana de Redes Avanzadas,UY
28	109.69.152.0/21	2808	0.10%	49942 WCP Notenstein Private Bank Ltd,CH
29	84.205.66.0/24	2610	0.09%	12654 RIPE-NCC-RIS-AS Reseaux IP Europeens Network Coordination Centre (RIPE NCC).EU

Aggregation Summary

Aggregation on the Internet could be MUCH better

- 35% saving on Internet routing table size is quite feasible
- Tools are available
- Commands on the routers are not hard
- CIDR-Report webpage
Receiving Prefixes

Receiving Prefixes

There are three scenarios for receiving prefixes from other ASNs

- Customer talking BGP
- Peer talking BGP
- Upstream/Transit talking BGP
- Each has different filtering requirements and need to be considered separately

Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer
- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP
- If the ISP has NOT assigned address space to its customer, then:
 - Check the five RIR databases to see if this address space really has been assigned to the customer
 - The tool: whois -h jwhois.apnic.net x.x.x.0/24
 - jwhois queries all RIR databases)

Receiving Prefixes: From Customers

Example use of whois to check if customer is entitled to announce address space:

\$ whois -h jwhois.apnic.net 202.12.29.0			
inetnum:	202.12.28.0 - 202.12.29.255		
netname:	APNIC-AP		
descr:	Asia Pacific Network Information Centre		
descr:	Regional Internet Registry for the Asia-Pacific		
descr:	6 Cordelia Street		
descr:	South Brisbane, QLD 4101		
descr:	Australia		
country:	AU		
admin-c:	AIC1-AP	Portable – means its an	
tech-c:	NO4-AP	assignment to the customer, the	
mnt-by:	APNIC-HM	customer can announce it to you	
mnt-irt:	IRT-APNIC-AP		
changed:	hm-changed@apnic.net		
status:	ASSIGNED PORTABLE		
changed:	hm-changed@apnic.net 20110309		
source:	APNIC	104	

Receiving Prefixes: From Customers

Example use of whois to check if customer is entitled to announce address space:

\$ whois -h whois.ripe.net 193.128.0.0			
inetnum:	193.128.0.0 - 193.133.255.255		
netname:	UK-PIPEX-193-128-133		
descr:	Verizon UK Limited	ALLOCATED means that this is	
country:	GB	Provider Aggregatable address	
org:	ORG-UA24-RIPE	space and can only be announced	
admin-c:	WERT1-RIPE	by the ISP holding the allocation	
tech-c:	UPHM1-RIPE	(in this case Verizon UK)	
status:	ALLOCATED UNSPECIFIED		
remarks:	Please send abuse n	otification to abuse@uk.uu.net	
mnt-by:	RIPE-NCC-HM-MNT		
mnt-lower:	AS1849-MNT		
mnt-routes:	AS1849-MNT		
mnt-routes:	WCOM-EMEA-RICE-MNT		
mnt-irt:	IRT-MCI-GB	185	
source:	RIPE # Filtered	185	

Receiving Prefixes: From Peers

A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table

- Prefixes you accept from a peer are only those they have indicated they will announce
- Prefixes you announce to your peer are only those you have indicated you will announce

Receiving Prefixes: From Peers

Agreeing what each will announce to the other:

 Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates

OR

Use of the Internet Routing Registry and configuration tools such as the IRRToolSet

https://github.com/irrtoolset/irrtoolset

Receiving Prefixes: From Upstream/Transit Provider

- Upstream/Transit Provider is an ISP who you pay to give you transit to the WHOLE Internet
- Receiving prefixes from them is not desirable unless really necessary
 - Traffic Engineering see BGP Multihoming Presentations
- Ask upstream/transit provider to either:
 - originate a default-route

OR

announce one prefix you can use as default

Receiving Prefixes:

From Upstream/Transit Provider

- If necessary to receive prefixes from any provider, care is required.
 - Don't accept default (unless you need it)
 - Don't accept your own prefixes
- Special uses prefixes for IPv4 and IPv6:
 - http://www.rfc-editor.org/rfc/rfc6890.txt
- For IPv4:
 - Don't accept prefixes longer than /24 (?)
 /24 was the historical class C
- For IPv6:
 - Don't accept prefixes longer than /48 (?)
 - /48 is the design minimum delegated to a site

Receiving Prefixes: From Upstream/Transit Provider

- Check Team Cymru's list of "bogons" www.team-cymru.org/Services/Bogons/http.html
- For IPv4 also consult: www.rfc-editor.org/rfc/rfc6441.txt (BCP171)
- For IPv6 also consult:

www.space.net/~gert/RIPE/ipv6-filters.html

Bogon Route Server:

www.team-cymru.org/Services/Bogons/routeserver.html

 Supplies a BGP feed (IPv4 and/or IPv6) of address blocks which should not appear in the BGP table

Receiving IPv4 Prefixes

deny 0.0.0.0/0! Default. deny 0.0.0/8 to /32 ! RFC1122 local host deny 10.0.0/8 to /32 ! RFC1918 deny 100.64.0.0/10 to /32 ! RFC6598 shared address deny 127.0.0.0/8 to /32 ! Loopback deny 169.254.0.0/16 to /32 ! Auto-config deny 172.16.0.0/12 to /32 ! RFC1918 ! RFC6598 IETF protocol deny 192.0.0.0/24 to /32 deny 192.0.2.0/24 to /32 ! TEST1 ! RFC1918 deny 192.168.0.0/16 to /32 deny 198.18.0.0/15 to /32 ! Benchmarking deny 198.51.100.0/24 to /32 ! TEST2 deny 203.0.113.0/24 to /32 ! TEST3 deny 224.0.0.0/3 to /32 ! Multicast & Experimental deny 0.0.0.0/0 from /25 to /32 ! Prefixes >/24 deny subnets of your own address space permit everything else

Receiving IPv6 Prefixes

```
permit 64:ff9b::/96
permit 2001::/32
deny 2001::/23 to /128
denv 2001:2::/48 to /128
deny 2001:10::/28 to /128
deny 2001:db8::/32 to /128
permit 2002::/16
deny 2002::/16 to /128
deny 3ffe::/16 to /128
permit 2000::/3 to /48 ! Global Unicast to /48s
deny ::/0 to /128
```

- ! RFC6052 v4v6trans
- ! Teredo
- ! RFC2928 IETF protocol
- ! Benchmarking
- ! ORCHID
- ! Documentation
- ! 6to4 aggregate
- 1 6to4 subnets
- ! Old 6bone
- deny subnets of your own address block
 - ! Deny everything else

Receiving Prefixes

Paying attention to prefixes received from customers, peers and transit providers assists with:

- The integrity of the local network
- The integrity of the Internet
- Responsibility of all ISPs to be good Internet citizens

Configuration Tips

Of passwords, tricks and templates

iBGP and IGPs Reminder!

- Make sure loopback is configured on router
 - iBGP between loopbacks, NOT real interfaces
- Make sure IGP carries loopback IPv4 /32 and IPv6 /128 address

Consider the DMZ nets:

- Use unnumbered interfaces?
- Use next-hop-self on iBGP neighbours
- Or carry the DMZ IPv4 /30s and IPv6 /127s in the iBGP
- Basically keep the DMZ nets out of the IGP!

iBGP: Next-hop-self

BGP speaker announces external network to iBGP peers using router's local address (loopback) as next-hop

Used by many ISPs on edge routers

- Preferable to carrying DMZ point-to-point addresses in the IGP
- Reduces size of IGP to just core infrastructure
- Alternative to using unnumbered interfaces
- Helps scale network
- Many ISPs consider this "best practice"

Limiting AS Path Length

Some BGP implementations have problems with long AS_PATHS

- Memory corruption
- Memory fragmentation
- Even using AS_PATH prepends, it is not normal to see more than 20 ASes in a typical AS_PATH in the Internet today
 - The Internet is around 5 ASes deep on average
 - Largest AS_PATH is usually 16-20 ASNs

Limiting AS Path Length

Some announcements have ridiculous lengths of AS-paths

This example is an error in one IPv6 implementation

*> 3FFE:1600::/24 22 11537 145 12199 10318 10566 13193 1930 2200 3425 293 5609 5430 13285 6939 14277 1849 33 15589 25336 6830 8002 2042 7610 i

This example shows 100 prepends (for no obvious reason)

*>i193.105.15.0 2516 3257 50404 5

 If your implementation supports it, consider limiting the maximum AS-path length you will accept

BGP Maximum Prefix Tracking

- Allow configuration of the maximum number of prefixes a BGP router will receive from a peer
 - Supported by good BGP implementations
- Usually have two level control for prefix count:
 - Reaches warning threshold: log a warning message
 Threshold is configurable
 - Reaches maximum:
 - Only send warnings
 - **D** Tear down BGP, manual intervention required to restart
 - Tear down BPG and automatically restart after a delay (configurable)

BGP TTL "hack"

Implement RFC5082 on BGP peerings

- (Generalised TTL Security Mechanism)
- Neighbour sets TTL to 255
- Local router expects TTL of incoming BGP packets to be 254
- No one apart from directly attached devices can send BGP packets which arrive with TTL of 254, so any possible attack by a remote miscreant is dropped due to TTL mismatch

BGP TTL "hack"

TTL Hack:

- Both neighbours must agree to use the feature
- TTL check is much easier to perform than MD5
- (Called BTSH BGP TTL Security Hack)
- Provides "security" for BGP sessions
 - In addition to packet filters of course
 - MD5 should still be used for messages which slip through the TTL hack
 - See https://www.nanog.org/meetings/nanog27/ presentations/meyer.pdf for more details

Templates

- Good practice to configure templates for everything
 - Vendor defaults tend not to be optimal or even very useful for ISPs
 - ISPs create their own defaults by using configuration templates
- eBGP and iBGP examples follow
 - Also see Team Cymru's BGP templates
 - http://www.team-cymru.org/ReadingRoom/ Documents/

iBGP Template Example

iBGP between loopbacks!

- Next-hop-self
 - Keep DMZ and external point-to-point out of IGP
- Always send communities in iBGP
 - Otherwise accidents will happen
 - (Default on some vendor implementations, optional on others)

Hardwire BGP to version 4

- Yes, this is being paranoid!
- Prevents accidental configuration of version 3 BGP still supported in some implementations

iBGP Template Example continued

Use passwords on iBGP session

- Not being paranoid, VERY necessary
- It's a secret shared between you and your peer
- If arriving packets don't have the correct MD5 hash, they are ignored
- Helps defeat miscreants who wish to attack BGP sessions
- Powerful preventative tool, especially when combined with filters and the TTL "hack"

eBGP Template Example

BGP damping

- Do NOT use it unless you understand the impact
- Do NOT use the vendor defaults without thinking
- Remove private ASes from announcements
 - Common omission today
- Use extensive filters, with "backup"
 - Use as-path filters to backup prefix filters
 - Keep policy language for implementing policy, rather than basic filtering
- Use password agreed between you and peer on eBGP session

eBGP Template Example continued

Use maximum-prefix tracking

- Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired
- Limit maximum as-path length inbound
- Log changes of neighbour state
 - …and monitor those logs!
- Make BGP admin distance higher than that of any IGP
 - Otherwise prefixes heard from outside your network could override your IGP!!

Summary

- Use configuration templates
- Standardise the configuration
- Be aware of standard "tricks" to avoid compromise of the BGP session
- Anything to make your life easier, network less prone to errors, network more likely to scale
- It's all about scaling if your network won't scale, then it won't be successful

BGP Techniques for Network Operators

Philip Smith <philip@nsrc.org> APRICOT 2016 22nd – 26th February 2016 Auckland, New Zealand

Last updated 21st February 2016