

BGP Multihoming Techniques

Philip Smith <pfs@cisco.com>
APRICOT 2006
22 Feb - 3 Mar 2006
Perth, Australia

1

Presentation Slides

Available on

ftp://ftp-eng.cisco.com

/pfs/seminars/APRICOT2006-BGP-part3.pdf

And on the APRICOT2006 meeting website

- Feel free to ask questions any time
- Aimed at Service Providers

Techniques can be used by many enterprises too

BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- Service Provider Multihoming
- Using Communities

It's all about redundancy, diversity & reliability

Redundancy

One connection to internet means the network is dependent on:

Local router (configuration, software, hardware)

WAN media (physical failure, carrier failure)

Upstream Service Provider (configuration, software, hardware)

Reliability

Business critical applications demand continuous availability

Lack of redundancy implies lack of reliability implies loss of revenue

Supplier Diversity

Many businesses demand supplier diversity as a matter of course

Internet connection from two or more suppliers

With two or more diverse WAN paths

With two or more exit points

With two or more international connections

Two of everything

- Not really a reason, but oft quoted...
- Leverage:

Playing one ISP off against the other for:

Service Quality

Service Offerings

Availability

Summary:

Multihoming is easy to demand as requirement for any service provider or end-site network

But what does it really mean:

In real life?

For the network?

For the Internet?

And how do we do it?

BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- Service Provider Multihoming
- Using Communities

Multihoming: Definitions & Options

What does it mean, what do we need, and how do we do it?

Multihoming Definition

More than one link external to the local network

two or more links to the same ISP two or more links to different ISPs

Usually two external facing routers
 one router gives link and provider redundancy
 only

AS Numbers

- An Autonomous System Number is required by BGP
- Obtained from upstream ISP or Regional Registry (RIR)

AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC

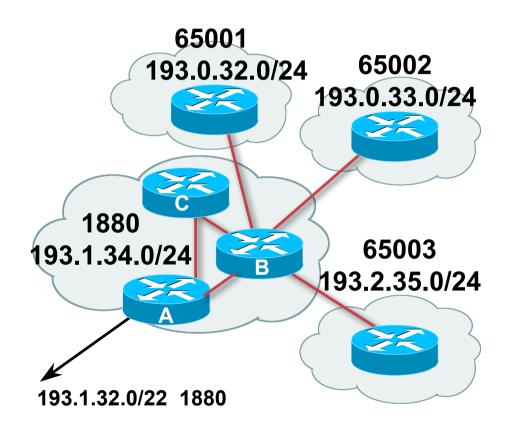
- Necessary when you have links to more than one ISP or to an exchange point
- 16 bit integer, ranging from 1 to 65534

Zero and 65535 are reserved

64512 through 65534 are called Private ASNs

Private-AS – Application

Applications


An ISP with customers multihomed on their backbone (RFC2270)

-or-

A corporate network with several regions but connections to the Internet only in the core

-or-

Within a BGP Confederation

Private-AS – Removal

 Private ASNs MUST be removed from all prefixes announced to the public Internet

Include configuration to remove private ASNs in the eBGP template

 As with RFC1918 address space, private ASNs are intended for internal use

They should not be leaked to the public Internet

Cisco IOS

neighbor x.x.x.x remove-private-AS

Policy Tools

- Local preference outbound traffic flows
- Metric (MED)
 inbound traffic flows (local scope)
- AS-PATH prepend inbound traffic flows (Internet scope)
- Communities
 specific inter-provider peering

Originating Prefixes: Assumptions

- MUST announce assigned address block to Internet
- MAY also announce subprefixes reachability is not guaranteed
- Current RIR minimum allocation is /21

Several ISPs filter RIR blocks on this boundary

Several ISPs filter the rest of address space according to the IANA assignments

This activity is called "Net Police" by some

Originating Prefixes

Some ISPs publish their minimum allocation sizes per /8 address block

AfriNIC: www.afrinic.net/docs/policies/afpol-v4200407-000.htm

APNIC: www.apnic.net/db/min-alloc.html

ARIN: www.arin.net/reference/ip_blocks.html

LACNIC: lacnic.net/en/registro/index.html

RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html

Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks

 IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:

www.iana.org/assignments/ipv4-address-space

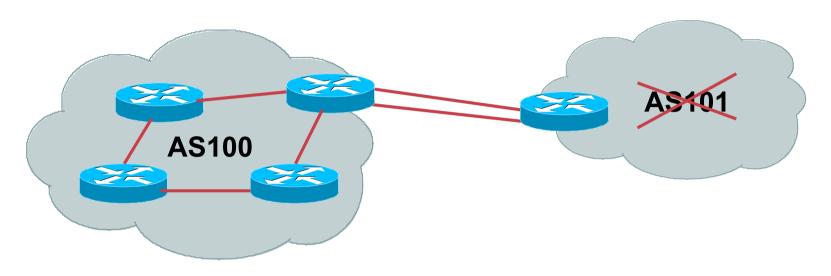
Several ISPs use this published information to filter prefixes on:

What should be routed (from IANA)

The minimum allocation size from the RIRs

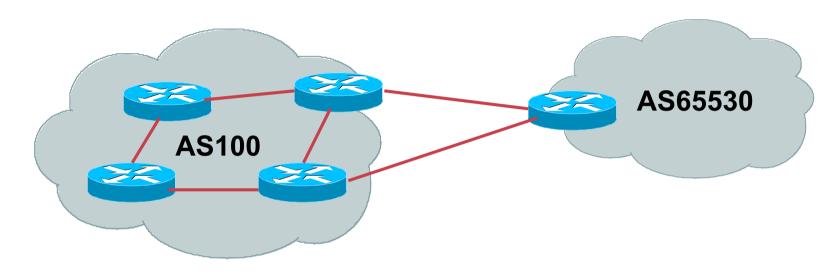
"Net Police" prefix list issues

- meant to "punish" ISPs who pollute the routing table with specifics rather than announcing aggregates
- impacts legitimate multihoming especially at the Internet's edge
- impacts regions where domestic backbone is unavailable or costs \$\$\$ compared with international bandwidth
- hard to maintain requires updating when RIRs start allocating from new address blocks
- don't do it unless consequences understood and you are prepared to keep the list current

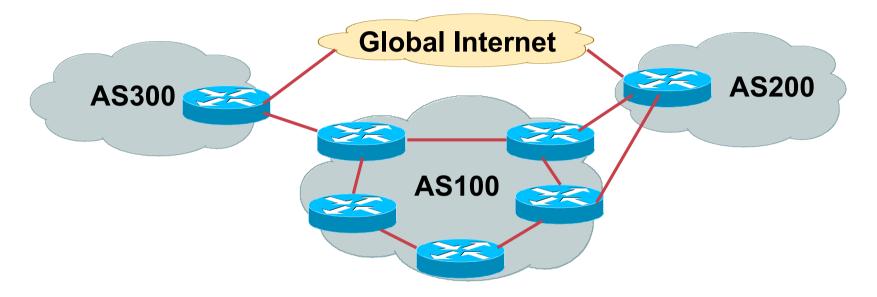

Consider using the Project Cymru bogon BGP feed

http://www.cymru.com/BGP/bogon-rs.html

Multihoming Scenarios


- Stub network
- Multi-homed stub network
- Multi-homed network
- Load-balancing

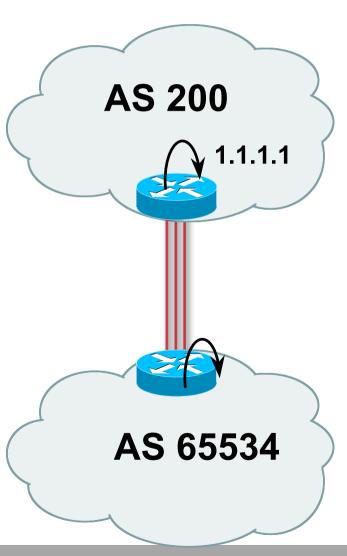
Stub Network


- No need for BGP
- Point static default to upstream ISP
- Router will load share on the two parallel circuits
- Upstream ISP advertises stub network
- Policy confined within upstream ISP's policy

Multi-homed Stub Network

- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP's policy

Multi-Homed Network



Many situations possible
 multiple sessions to same ISP
 secondary for backup only
 load-share between primary and secondary
 selectively use different ISPs

Multiple Sessions to an ISP

- Use eBGP multihop
 eBGP to loopback addresses
 eBGP prefixes learned with loopback address as next hop
- Cisco IOS

```
router bgp 65534
neighbor 1.1.1.1 remote-as 200
neighbor 1.1.1.1 ebgp-multihop 2
!
ip route 1.1.1.1 255.255.255.255 serial 1/0
ip route 1.1.1.1 255.255.255.255 serial 1/1
ip route 1.1.1.1 255.255.255.255 serial 1/2
```


Multiple Sessions to an ISP

Try and avoid use of ebgp-multihop unless:

It's absolutely necessary -or-

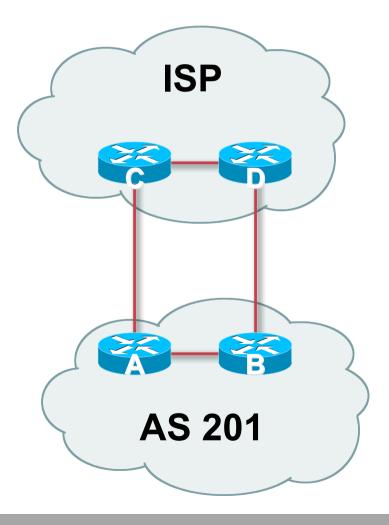
Loadsharing across multiple links

Many ISPs discourage its use, for example:

We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:

- routing loops
- failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker

Multiple Sessions to an ISP


- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing

Point default towards one ISP

Learn selected prefixes from second ISP

Modify the number of prefixes learnt to achieve acceptable load sharing

No magic solution

BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- Service Provider Multihoming
- Using Communities

Preparing the Network

Putting our own house in order first...

Preparing the Network

- We will deploy BGP across the network before we try and multihome
- BGP will be used therefore an ASN is required
- If multihoming to different ISPs, public ASN needed:

Either go to upstream ISP who is a registry member, or

Apply to the RIR yourself for a one off assignment, or

Ask an ISP who is a registry member, or

Join the RIR and get your own IP address allocation too (this option strongly recommended)!

Preparing the Network

The network is not running any BGP at the moment

single statically routed connection to upstream ISP

The network is not running any IGP at all

Static default and routes through the network to do "routing"

Preparing the Network IGP

- Decide on IGP: OSPF or ISIS ©
- Assign loopback interfaces and /32 addresses to each router which will run the IGP

Loopback is used for OSPF and BGP router id anchor Used for iBGP and route origination

Deploy IGP (e.g. OSPF)

IGP can be deployed with NO IMPACT on the existing static routing

For Cisco IOS, OSPF distance is 110 & static distance is 1

Smallest distance wins

Preparing the Network IGP (cont)

 Be prudent deploying IGP – keep the Link State Database Lean!

Router loopbacks go in IGP

WAN point to point links go in IGP

(In fact, any link where IGP dynamic routing will be run should go into IGP)

Summarise on area/level boundaries (if possible) – i.e. think about your IGP address plan

Preparing the Network IGP (cont)

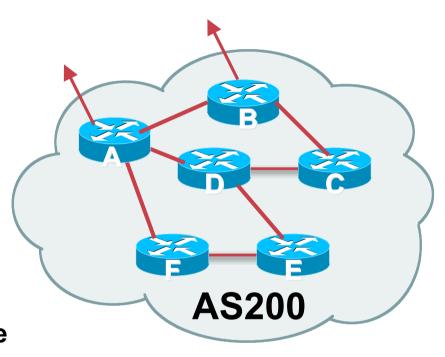
Routes which don't go into the IGP include:

Dynamic assignment pools (DSL/Cable/Dial)

Customer point to point link addressing

(using next-hop-self in iBGP ensures that these do NOT need to be in IGP)

Static/Hosting LANs

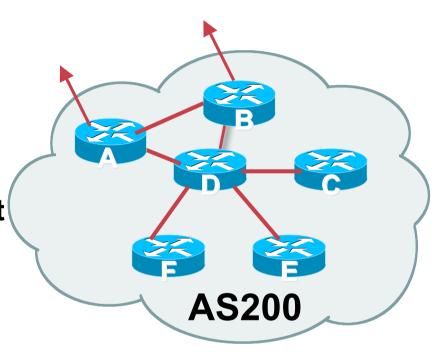

Customer assigned address space

Anything else not listed in the previous slide

Preparing the Network iBGP

- Second step is to configure the local network to use iBGP
- iBGP can run on

 all routers, or
 a subset of routers, or
 just on the upstream edge
- iBGP must run on all routers which are in the transit path between external connections


Preparing the Network iBGP (Transit Path)

- iBGP must run on all routers which are in the transit path between external connections
- Routers C, E and F are not in the transit path

Static routes or IGP will suffice

 Router D is in the transit path

Will need to be in iBGP mesh, otherwise routing loops will result

Preparing the Network Layers

Typical SP networks have three layers:

Core – the backbone, usually the transit path

Distribution – the middle, PoP aggregation layer

Aggregation – the edge, the devices connecting customers

Preparing the Network Aggregation Layer

iBGP is optional

Many ISPs run iBGP here, either partial routing (more common) or full routing (less common)

Full routing is not needed unless customers want full table

Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing

Communities and peer-groups make this administratively easy

Many aggregation devices can't run iBGP

Static routes from distribution devices for address pools

IGP for best exit

Preparing the Network Distribution Layer

Usually runs iBGP

Partial or full routing (as with aggregation layer)

But does not have to run iBGP

IGP is then used to carry customer prefixes (does not scale)

IGP is used to determine nearest exit

 Networks which plan to grow large should deploy iBGP from day one

Migration at a later date is extra work

No extra overhead in deploying iBGP, indeed IGP benefits

Preparing the Network Core Layer

- Core of network is usually the transit path
- iBGP necessary between core devices

Full routes or partial routes:

Transit ISPs carry full routes in core

Edge ISPs carry partial routes only

Core layer includes AS border routers

Decide on:

Best iBGP policy

Will it be full routes everywhere, or partial, or some mix?

iBGP scaling technique

Community policy?

Route-reflectors?

Techniques such as peer groups and peer templates?

Then deploy iBGP:

Step 1: Introduce iBGP mesh on chosen routers make sure that iBGP distance is greater than IGP distance (it usually is)

Step 2: Install "customer" prefixes into iBGP

Check! Does the network still work?

Step 3: Carefully remove the static routing for the prefixes now in IGP and iBGP

Check! Does the network still work?

Step 4: Deployment of eBGP follows

Install "customer" prefixes into iBGP?

- Customer assigned address space
 Network statement/static route combination
 Use unique community to identify customer assignments
- Customer facing point-to-point links

Redistribute connected through filters which only permit point-to-point link addresses to enter iBGP

Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)

Dynamic assignment pools & local LANs

Simple network statement will do this

Use unique community to identify these networks

Carefully remove static routes?

Work on one router at a time:

Check that static route for a particular destination is also learned either by IGP or by iBGP

If so, remove it

If not, establish why and fix the problem

(Remember to look in the RIB, not the FIB!)

- Then the next router, until the whole PoP is done
- Then the next PoP, and so on until the network is now dependent on the IGP and iBGP you have deployed

Preparing the Network Completion

Previous steps are NOT flag day steps

Each can be carried out during different maintenance periods, for example:

Step One on Week One

Step Two on Week Two

Step Three on Week Three

And so on

And with proper planning will have NO customer visible impact at all

Preparing the Network Configuration Summary

- IGP essential networks are in IGP
- Customer networks are now in iBGP iBGP deployed over the backbone
 Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy eBGP

BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- "BGP Traffic Engineering"
- Using Communities

Learning to walk before we try running

- No frills multihoming
- Will look at two cases:

Multihoming with the same ISP Multihoming to different ISPs

Will keep the examples easy

Understanding easy concepts will make the more complex scenarios easier to comprehend

All assume that the site multihoming has a /19 address block

 This type is most commonplace at the edge of the Internet

Networks here are usually concerned with inbound traffic flows

Outbound traffic flows being "nearest exit" is usually sufficient

Can apply to the leaf ISP as well as Enterprise networks

Multihoming to the Same ISP

Basic Multihoming: Multihoming to the same ISP

Use BGP for this type of multihoming

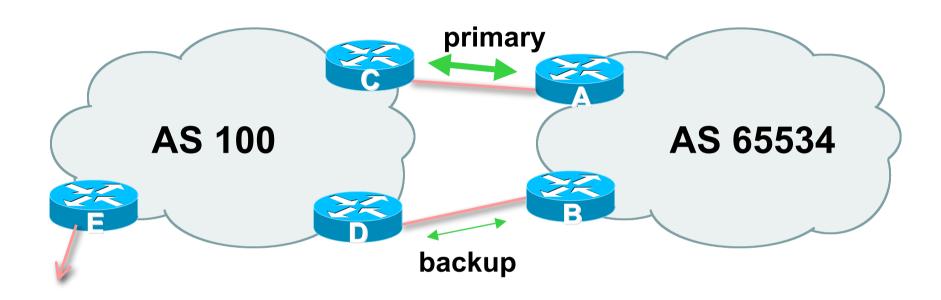
use a private AS (ASN > 64511)

There is no need or justification for a public ASN

Making the nets of the end-site visible gives no useful information to the Internet

Upstream ISP proxy aggregates

in other words, announces only your address block to the Internet from their AS (as would be done if you had one statically routed connection)



Two links to the same ISP

One link primary, the other link backup only

 Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup

For example, primary path might be an E1, backup might be 64kbps

 Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement

Announce /19 aggregate on each link

primary link:

Outbound – announce /19 unaltered

Inbound – receive default route

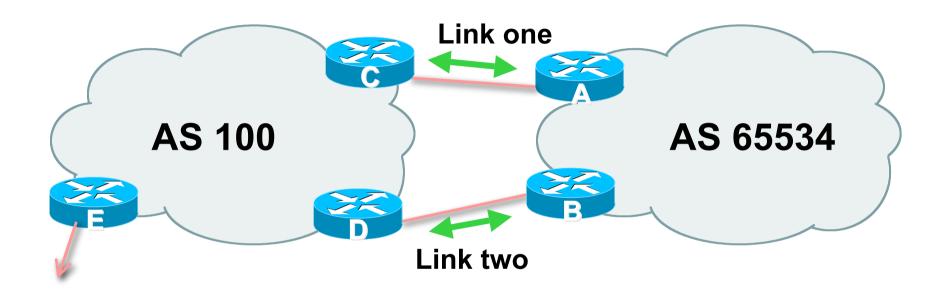
backup link:

Outbound – announce /19 with increased metric

Inbound – received default, and reduce local preference

 When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

- Router E removes the private AS and customer's subprefixes from external announcements
- Private AS still visible inside AS100



Two links to the same ISP

With Loadsharing

- More common case
- End sites tend not to buy circuits and leave them idle, only used for backup as in previous example
- This example assumes equal capacity circuits

Unequal capacity circuits requires more refinement – see later

 Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 basic inbound loadsharing
 assumes equal circuit capacity and even spread of traffic across
 address block
- Vary the split until "perfect" loadsharing achieved
- Accept the default from upstream
 - basic outbound loadsharing by nearest exit
 - okay in first approx as most ISP and end-site traffic is inbound

- Loadsharing configuration is only on customer router
- Upstream ISP has to

remove customer subprefixes from external announcements

remove private AS from external announcements

Could also use BGP communities

Multihoming to different ISPs

Two links to different ISPs

Use a Public AS

Or use private AS if agreed with the other ISP

But some people don't like the "inconsistent-AS" which results from use of a private-AS

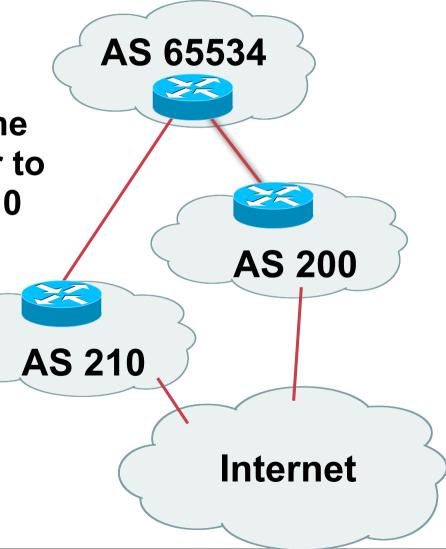
Address space comes from

both upstreams or

Regional Internet Registry

Configuration concepts very similar

Inconsistent-AS?

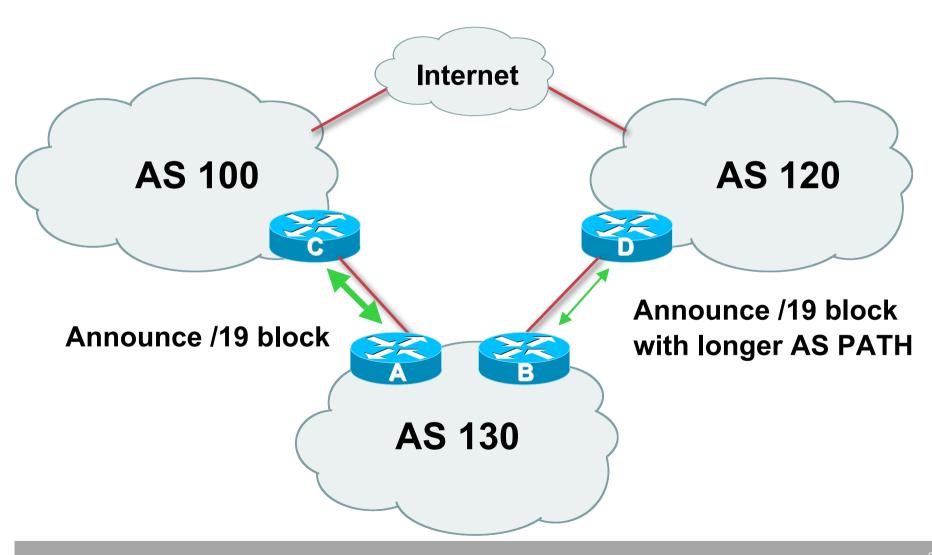

 Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200

This is NOT bad

Nor is it illegal

Cisco IOS command is

show ip bgp inconsistent-as



Two links to different ISPs

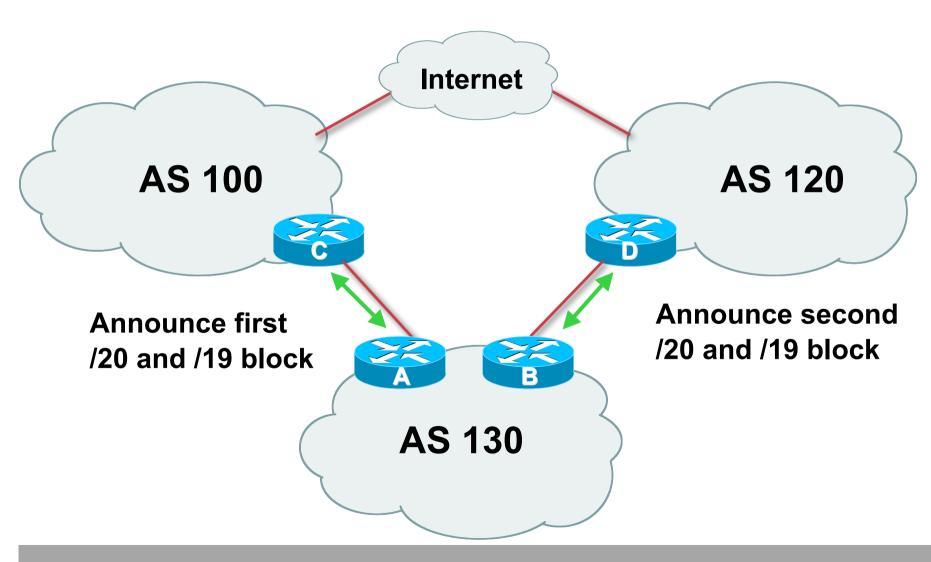
One link primary, the other link backup only

Two links to different ISPs (one as backup only)

Two links to different ISPs (one as backup only)

- Announce /19 aggregate on each link
 primary link makes standard announcement
 backup link lengthens the AS PATH by using AS
 PATH prepend
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Two links to different ISPs (one as backup only)


- Not a common situation as most sites tend to prefer using whatever capacity they have
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction

Two links to different ISPs

With Loadsharing

Two links to different ISPs (with loadsharing)

Two links to different ISPs (with loadsharing)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link

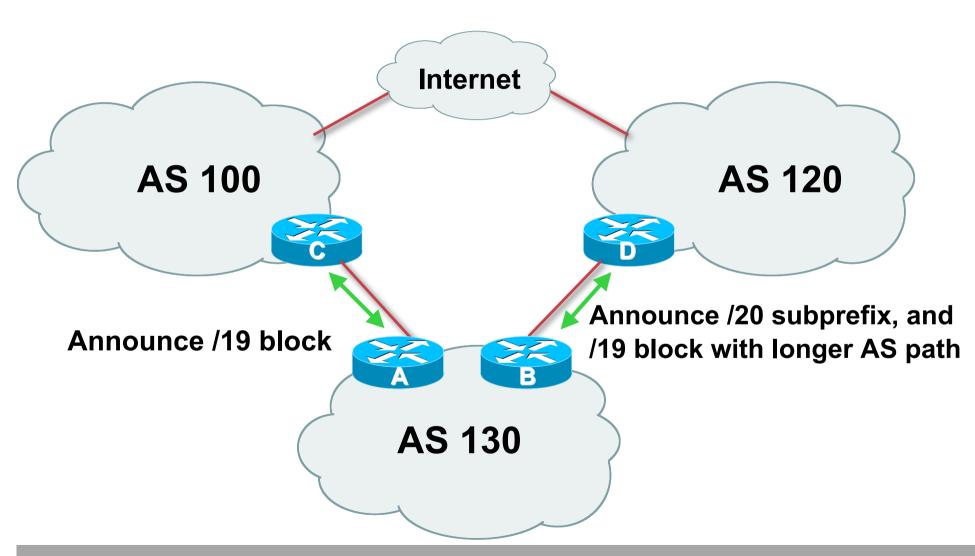
basic inbound loadsharing

 When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity

Two links to different ISPs (with loadsharing)

- Loadsharing in this case is very basic
- But shows the first steps in designing a load sharing solution

Start with a simple concept


And build on it...!

Two links to different ISPs

More Controlled Loadsharing

Loadsharing with different ISPs

74

Loadsharing with different ISPs

Announce /19 aggregate on each link

On first link, announce /19 as normal

On second link, announce /19 with longer AS PATH, and announce one /20 subprefix

controls loadsharing between upstreams and the Internet

- Vary the subprefix size and AS PATH length until "perfect" loadsharing achieved
- Still require redundancy!

Loadsharing with different ISPs

- This example is more commonplace
- Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs
- Notice that the /19 aggregate block is ALWAYS announced

BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- "BGP Traffic Engineering"
- Using Communities

BGP Traffic Engineering

Previous examples dealt with loadsharing inbound traffic

Of primary concern at Internet edge

What about outbound traffic?

Transit ISPs strive to balance traffic flows in both directions

Balance link utilisation

Try and keep most traffic flows symmetric

Some edge ISPs try and do this too

The original "Traffic Engineering"

Balancing outbound traffic requires inbound routing information

Common solution is "full routing table"

Rarely necessary

Why use the "routing mallet" to try solve loadsharing problems?

"Keep It Simple" is often easier (and \$\$\$ cheaper) than carrying N-copies of the full routing table

Service Provider Multihoming MYTHS!!

- Common MYTHS
- 1: You need the full routing table to multihome
 People who sell router memory would like you to believe this
 Only true if you are a transit provider
 - Full routing table can be a significant hindrance to multihoming
- 2: You need a BIG router to multihome

Router size is related to data rates, not running BGP In reality, to multihome, your router needs to:

Have two interfaces.

Be able to talk BGP to at least two peers,

Be able to handle BGP attributes,

Handle at least one prefix

3: BGP is complex

In the wrong hands, yes it can be! Keep it Simple!

Service Provider Multihoming: Some Strategies

Take the prefixes you need to aid traffic engineering

Look at NetFlow data for popular sites

 Prefixes originated by your immediate neighbours and their neighbours will do more to aid load balancing than prefixes from ASNs many hops away

Concentrate on local destinations

Use default routing as much as possible

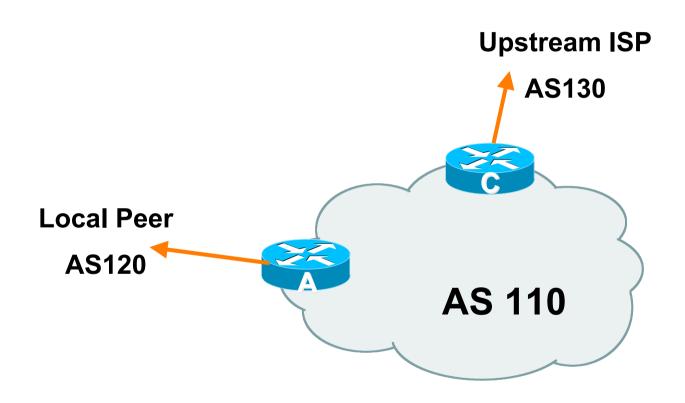
Or use the full routing table with care

Examples

One upstream, one local peer

One upstream, local exchange point

Two upstreams, one local peer


- Require BGP and a public ASN
- Examples assume that the local network has their own /19 address block

One upstream, one local peer

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the "Internet"
- Connect to the local competition so that local traffic stays local

Saves spending valuable \$ on upstream transit costs for local traffic

- Announce /19 aggregate on each link
- Accept default route only from upstream
 Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer

Two configurations possible for Router A

Use of AS Path Filters assumes peer knows what they are doing

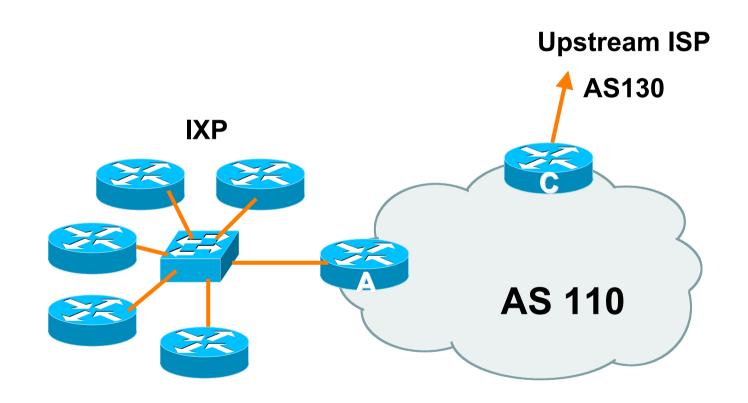
Prefix Filters are higher maintenance, but safer

Some ISPs use both

 Local traffic goes to and from local peer, everything else goes to upstream

Aside: Configuration Recommendation

Private Peers


The peering ISPs exchange prefixes they originate
Sometimes they exchange prefixes from neighbouring ASNs too

 Be aware that the private peer eBGP router should carry only the prefixes you want the private peer to receive

Otherwise they could point a default route to you and unintentionally transit your backbone

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the "Internet"
- Connect to the local Internet Exchange Point so that local traffic stays local
 - Saves spending valuable \$ on upstream transit costs for local traffic

- Announce /19 aggregate to every neighbouring AS
- Accept default route only from upstream
 Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes originated by IXP peers

One Upstream, Local Exchange

Router A does not generate the aggregate for AS110

If Router A becomes disconnected from backbone, then the aggregate is no longer announced to the IX

BGP failover works as expected

 Note that the local preference for for inbound announcements from the IX is set higher than the default

This ensures that local traffic crosses the IXP

(And avoids potential problems with any uRPF check)

Aside: IXP Configuration Recommendation

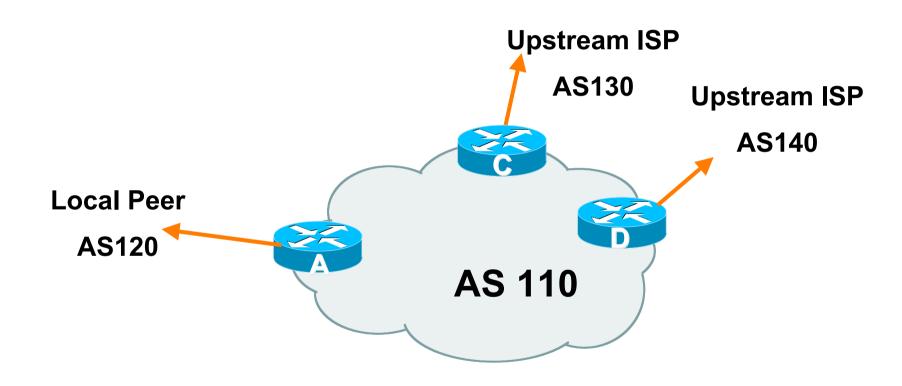
IXP peers

The peering ISPs at the IXP exchange prefixes they originate Sometimes they exchange prefixes from neighbouring ASNs too

 Be aware that the IXP border router should carry only the prefixes you want the IXP peers to receive and the destinations you want them to be able to reach

Otherwise they could point a default route to you and unintentionally transit your backbone

If IXP router is at IX, and distant from your backbone
 Don't originate your address block at your IXP router


Two Upstreams, One local peer

 Connect to both upstream transit providers to see the "Internet"

Provides external redundancy and diversity – the reason to multihome

 Connect to the local peer so that local traffic stays local

Saves spending valuable \$ on upstream transit costs for local traffic

- Announce /19 aggregate on each link
- Accept default route only from upstreams
 Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer

- Router A has same routing configuration as in example with one upstream and one local peer
- Two configuration options for Routers C and D:

Accept full routing from both upstreams

Expensive & unnecessary!

Accept default from one upstream and some routes from the other upstream

The way to go!

Two Upstreams, One Local Peer Full Routes

Router C configuration:

Accept full routes from AS130

Tag prefixes originated by AS130 and AS130's neighbouring ASes with local preference 120

Traffic to those ASes will go over AS130 link

Remaining prefixes tagged with local preference of 80

Traffic to other all other ASes will go over the link to AS140

Router D configuration same as Router C without setting any preferences

Two Upstreams, One Local Peer Full Routes

Full routes from upstreams

Expensive – needs lots of memory and CPU

Need to play preference games

Previous example is only an example – real life will need improved fine-tuning!

Previous example doesn't consider inbound traffic – see earlier in presentation for examples

Two Upstreams, One Local Peer Partial Routes

Strategy:

Ask one upstream for a default route

Easy to originate default towards a BGP neighbour

Ask other upstream for a full routing table

Then filter this routing table based on neighbouring ASN

E.g. want traffic to their neighbours to go over the link to that ASN

Most of what upstream sends is thrown away

Easier than asking the upstream to set up custom BGP filters for you

Two Upstreams, One Local Peer Partial Routes

Router C configuration:

Accept full routes from AS130

(or get them to send less)

Filter ASNs so only AS130 and AS130's neighbouring ASes are accepted

Allow default, and set it to local preference 80

Traffic to those ASes will go over AS130 link

Traffic to other all other ASes will go over the link to AS140

If AS140 link fails, backup via AS130 – and vice-versa

Router D configuration:

Accept only the default route

Two Upstreams, One Local Peer Partial Routes

Partial routes from upstreams

Not expensive – only carry the routes necessary for loadsharing

Need to filter on AS paths

Previous example is only an example – real life will need improved fine-tuning!

Previous example doesn't consider inbound traffic – see earlier in presentation for examples

When upstreams cannot or will not announce default route

Because of operational policy against using "defaultoriginate" on BGP peering

Solution is to use IGP to propagate default from the edge/peering routers

Aside: Configuration Recommendation

When distributing internal default by iBGP or OSPF

Make sure that routers connecting to private peers or to IXPs do NOT carry the default route

Otherwise they could point a default route to you and unintentionally transit your backbone

Simple fix for Private Peer/IXP routers:

ip route 0.0.0.0 0.0.0.0 null0

BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- "BGP Traffic Engineering"
- Using Communities

Communities

How they are used in practice

Using Communities: RFC1998

- Informational RFC
- Describes how to implement loadsharing and backup on multiple inter-AS links

BGP communities used to determine local preference in upstream's network

- Gives control to the customer
- Simplifies upstream's configuration simplifies network operation!

RFC1998

Community values defined to have particular meanings:

```
ASx:100 set local pref 100 preferred route

ASx:90 set local pref 90 backup route if dualhomed on ASx

ASx:80 set local pref 80 main link is to another ISP with same AS path length

ASx:70 set local pref 70 main link is to another ISP
```

Conference_name 11

RFC1998

Supporting RFC1998

Many ISPs do, more should

Check AS object in the Internet Routing Registry

If you do, insert comment in AS object in the IRR

Or make a note on your website

Beyond RFC1998

- RFC1998 is okay for "simple" multihomed customers assumes that upstreams are interconnected
- ISPs have created many other communities to handle more complex situations

Simplify ISP BGP configuration

Give customer more policy control

ISP BGP Communities

 There are no recommended ISP BGP communities apart from RFC1998

The four standard communities

www.iana.org/assignments/bgp-well-known-communities

Efforts have been made to document from time to time

totem.info.ucl.ac.be/publications/papers-elec-versions/draft-quoitin-bgp-comm-survey-00.pdf

But so far... nothing more... ⊗

Collection of ISP communities at www.onesc.net/communities

ISP policy is usually published

On the ISP's website

Referenced in the AS Object in the IRR

Some ISP Examples: Sprintlink

http://www.sprintlink.net/policy/bgp.html

WHAT YOU CAN CONTROL

AS-PATH PREPENDS

Sprint allows customers to use AS-path prepending to adjust route preference on the network. Such prepending will be received and passed on properly without notifiving Sprint of your change in announcments.

Additionally, Sprint will prepend AS1239 to eBGP sessions with certain autonomous systems depending on a received community. Currently, the following ASes are supported: 1668, 209, 2914, 3300, 3356, 3549, 3561, 4635, 701, 7018, 702 and 8220.

String	Resulting AS Path to ASXXX		
65000:XXX	Do not advertise to ASXXX		
65001:XX	1239 (default)		
65002:XX	1239 1239		
65003:XXX	1239 1239 1239		
65004:XXX	1239 1239 1239 1239		
String	Resulting AS Path to ASXXX in Asia		
65070:XXX	Do not advertise to ASXXX		
65071:XXX	1239 (default)		
65072:XXX	1239 1239		
65073:XXX	1239 1239 1239		
65074:XXX	1239 1239 1239		
String Resulting AS Path to ASXXX in Europe			
65050:XXX	Do not advertise to ASXXX		
65051:XXX	1239 (default)		
65052:XXX	1239 1239		
65053:XXX	1239 1239 1239		
65054:XXX	1239 1239 1239 1		
a	Resulting AS Path to ASXXX in North		
String	America		
65010:XXX	Do not advertise to ASXXX		
65011:XXX	1239 (default)		
65012:XXX	1239 1239		
65013:XXX	1239 1239 1239		
65014:XXX	1239 1239 1239 1239		
String Resulting AS Path to all supported ASes			
65000:0	Do not advertise		
65001:0	1239 (default)		
65002:0			

4000 4000 4000

More info at

www.sprintlink.net/policy/bgp.html

Some ISP Examples AAPT

```
AS2764
aut-num:
              ASN-CONNECT-NET
as-name:
descr:
             AAPT Limited
admin-c:
             CNO2-AP
tech-c:
              CNO2-AP
remarks:
              Community support definitions
remarks:
remarks:
              Community Definition
remarks:
remarks:
              2764:2 Don't announce outside local POP
remarks:
              2764:4 Lower local preference by 15
remarks:
              2764:5 Lower local preference by 5
remarks:
              2764:6 Announce to customers and all peers
                           (incl int'l peers), but not transit
remarks:
              2764:7 Announce to customers only
remarks:
              2764:14 Announce to AANX
notify:
              routing@connect.com.au
mnt-by:
              CONNECT-AU
              nobody@connect.com.au 20050225
changed:
              CCAIR
source:
```

More at http://info.connect.com.au/docs/routing/general/multi-faq.shtml#q13

Conference name

Some ISP Examples BT Ignite

aut-num:	AS5400	
descr:	BT Ignite European Backbone	
remarks:		
remarks:	Community to	Community to
remarks:	Not announce To peer:	AS prepend 5400
remarks:		
remarks:	5400:1000 All peers & Transits	5400:2000
remarks:		
remarks:	5400:1500 All Transits	5400:2500
remarks:	5400:1501 Sprint Transit (AS1239)	5400:2501
remarks:	5400:1502 SAVVIS Transit (AS3561)	5400:2502
remarks:	5400:1503 Level 3 Transit (AS3356)	5400:2503
remarks:	5400:1504 AT&T Transit (AS7018)	5400:2504
remarks:	5400:1505 UUnet Transit (AS701)	5400:2505
remarks:		
remarks:	5400:1001 Nexica (AS24592)	5400:2001
remarks:	5400:1002 Fujitsu (AS3324)	5400:2002
remarks:	5400:1003 Unisource (AS3300)	5400:2003
<snip></snip>		
notify:	notify@eu.bt.net And m	nany
mnt-by:		
source:	RIPE many n	nore:

Conference name

Creating your own community policy

 Consider creating communities to give policy control to customers

Reduces technical support burden

Reduces the amount of router reconfiguration, and the chance of mistakes

Use the previous examples as a guideline

BGP Multihoming Techniques Next: BGP Troubleshooting

Philip Smith <pfs@cisco.com>
APRICOT 2006
22 Feb - 3 Mar 2006
Perth, Australia