Promoting Routability

Routing for the Internet APRICOT'99 Tutorial - Singapore March 2nd 1999

Introduction

• Presenter:

Philip Smith, Consulting Engineer Office of the CTO, Cisco Systems e-mail: pfs@cisco.com

Please ask questions

Agenda

- Routing Terms and Concepts
- Introduction to IGPs
- BGP for ISPs
- Routing Design for ISPs
- Routing Etiquette and the IRR

Goals

- Promoting a healthy Internet
- Efficient and Effective Routing Configuration
- Internet Routing Registry
 - awareness
 - understanding
 - participation

Routing Terms and Concepts

Some Icons

Router (layer 3, IP datagram forwarding)

ATM or Frame Relay switch (layer 2, frame or cell forwarding)

Network Cloud

Definitions

• PoP - Point of Presence physical location of ISP's equipment • vPoP - virtual PoP apparent ISP location in reality a back hauled access point used mainly for dial access networks Hub - large central PoP

Network Topologies

Routed backbone

- HDLC or PPP links between routers
- Easier routing configuration and debugging

Switched backbone

- Frame Relay/ATM switches in core
- Surrounded by routers
- Complex routing & debugging
- Traffic Engineering

PoP Topologies

- Core routers high speed trunk connections
- Distribution routers and Access routers high port density
- Border routers connections to other AS's
- Service routers hosting and servers
- Some functions might be handled by a single router

Definitions

- Transit carrying traffic across a network, usually for a fee
- Peering exchanging routing information and traffic
- **Default** where to send traffic when there is no explicit match is in the routing table

Peering and Transit example

Network Interconnections

- Direct Interconnect
- Local IXP (Internet eXchange Point)

peering point for a group of local/regional providers

Transit IXP

connects local providers to backbone (transit) providers

Hybrid IXP

combines the function of local and transit

Direct (private) Interconnect

Public Interconnect Point

- Centralised (in one facility)
- Distributed (connected via WAN links)
- Shared, switched or routed interconnect

Router, FDDI, Ethernet, ATM, Frame relay, SMDS, etc.

Public Interconnect Point

each of these represents a border router in a different autonomous system

www.cisco.com

Route Server

- Device which maintains BGP routing table at IXP and forwards it to IXP participants
- Advantages:

reduces resource burden on border routers (CPU, memory, configuration complexity)

reduces administrative burden on providers

• Disadvantages:

must rely on a third party (for management, configuration, software updates, maintenance, etc)

Default Free Zone

The default free zone is made up of Internet routers which have explicit routing information about the rest of the Internet, and therefore do not need to use a default route.

High Level View of the Global Internet

Routing Concepts

- Routing and Forwarding
- Routing definitions
- Policy options
- Addressing
- Routing Protocols

Routing versus Forwarding

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the "directions"

IP Routing - finding the path

- Path derived from information received from a routing protocol
- Several alternative paths may exist best next hop stored in forwarding table
- Decisions are updated periodically or as topology changes (event driven)
- Decisions are based on:

topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)

IP route lookup

- Based on destination IP packet
- "longest match" routing

more specific prefix preferred over less specific prefix

example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.

IP Forwarding

- Router makes decision on which interface a packet is sent to
- Forwarding table populated by routing process
- Forwarding decisions:

destination address

class of service (fair queuing, precedence, others)

local requirements (packet filtering)

Can be aided by special hardware

Explicit versus Default routing

• Default:

simple, cheap (cycles, memory, bandwidth) low granularity (metric games)

Explicit (default free zone)

high overhead, complex, high cost, high granularity

Hybrid

minimise overhead

provide useful granularity

requires some filtering knowledge

www.cisco.com

Egress Traffic

- How packets leave your network
- Egress traffic depends on:

route availability (what others send you)

route acceptance (what you accept from others)

policy and tuning (what you do with routes from others)

Peering and transit agreements

APRICOT'99 © 1999, Cisco Systems, Inc.

www.cisco.com

Ingress Traffic

- How packets get to your network and your customers' networks
- Ingress traffic depends on:
 - what information you send and to whom
 - based on your addressing and AS's
 - based on others' policy (what they accept from you and what they do with it)

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control

APRICOT'99 © 1999, Cisco Systems, Inc.

www.cisco.com

Demarcation Zone (DMZ)

www.cisco.com

Definition of terms

- Neighbours AS's which directly exchange routing information
- Announce send routing information to a neighbour
- Accept receive and use routing information sent by a neighbour
- Originate insert routing information into external announcements (usually as a result of the IGP)
- Peers routers in neighbouring AS's or within one AS which exchange routing and policy information

Routing flow and packet flow

For networks in AS1 and AS2 to communicate:

AS1 must announce to AS2

AS2 must accept from AS1

AS2 must announce to AS1

AS1 must accept from AS2

Routing flow and Traffic flow

Traffic flow is always in the opposite direction of the flow of routing information

filtering outgoing routing information inhibits traffic flowing in

filtering incoming routing information inhibits traffic flowing out

Routing policy limitations

AS99 uses red link for traffic going to the red AS and green link for traffic going to the green AS

To implement this policy for AS99:

- accept routes originating in the red AS on the red link
- accept all other routes on the green link

Routing policy limitations

For packets flowing *toward* AS 99:

Unless AS 22 and all other intermediate AS's cooperate in pushing green traffic to the green link then some reasonable policies can not be implemented.

Routing policy with multiple AS's

For net N1 in AS1 to send traffic to net N16 in AS16:

- AS16 must originate and announce N16 to AS8.
- AS8 must accept N16 from AS16.
- AS8 must announce N16 to AS1 or AS34.
- AS1 must accept N16 from AS8 or AS34.

For two-way packet flow, similar policies must exist for N1.

Granularity of routing policy

- What to announce/accept
- Preferences between multiple accepts single route routes originated by single AS routes originated by a group of AS's routes traversing specific path routes traversing specific AS routes belonging to other groupings (including combinations)
Routing Policy Issues

- 55,000+ prefixes (not realistic to set policy on all of them individually)
- 4500+ AS's (too many)
- routes tied to a specific AS or path may be unstable regardless of connectivity
- groups of AS's are a natural abstraction for filtering purposes

Routing Policy Issues

- Destination based limitations
- Global topology not known (and constantly changing)
- Route groupings are not known

AS membership or AS groups

Set of all routes in the Internet is not known

IP Addressing

- Internet is classless
- Concept of Class A, class B and class C is no more

engineers talk in terms of prefix length, for example the class B 158.43 is now called 158.43/16.

All routers must be CIDR capable
Classless InterDomain Routing

IP Addressing

IP Address space is a resource shared amongst <u>all</u> Internet users

Regional Internet Registries delegated allocation responsibility by the IANA

RIRs allocate address space to ISPs or Local/National Internet Registries

Address space is assigned to end customers/users by RIRs/LIRs/ISPs

When address space is not used, it should be returned to the free pool for reallocation

Geographical and Provider addressing

- Geographical addressing ARIN/APNIC/RIPE (the 3 RIRs) Nationally Assigned (country NICs)
- Provider-based addressing

Addresses assigned by upstream provider

Local Internet Registries

Geographical Addressing

Advantages

- Reduces global routing table - longer term
- provider independent
- good local routing at interconnects
- participant in RIR process

Disadvantages

- Increases global routing table - short term
- goes against RIR aims of aggregation
- maybe suboptimal routing

Provider Based Addressing

Advantages

- Easy to get started
- no increase in size of global routing table

part of upstream ISP's address block

 no need for an AS or BGP

Disadvantages

- Need to renumber when changing providers
- may fragment initial providers block when multihoming
- no participation in RIR process

Hierarchy of Routing Protocols

What Is an IGP?

- Interior Gateway Protocol
- Within an Autonomous System
- Carries information about internal prefixes
- Examples OSPF, ISIS, EIGRP...

What Is an EGP?

- Exterior Gateway Protocol
- Used to convey routing information between Autonomous Systems
- De-coupled from the IGP
- Current EGP is BGP

Why Do We Need an EGP?

 Scaling to large network Hierarchy

Limit scope of failure

Policy

Control reachability to prefixes

Merge separate organizations

Connect multiple IGPs

Interior versus Exterior Routing Protocols

Interior

- automatic neighbour discovery
- generally trust your IGP routers
- routes go to all IGP routers
- binds routers in one AS together

Exterior

specifically configured peers

connecting with outside networks

set administrative boundaries

binds AS's together

Introduction to IGPs

ISIS - Intermediate System to Intermediate System

- Link State Routing Protocol
- OSI development now continued in IETF
- Supports VLSM
- Low bandwidth requirements
- Supports two levels

The backbone (level 2) and areas (level 1)

Route summarisation

OSPF - Open Shortest Path First

- Link State Routing Protocol
- Designed by IETF for TCP/IP RFC2328
- Supports VLSM
- Low bandwidth requirements
- Supports different types of areas
- Route summarisation and authentication

Low Bandwidth Utilisation

Only changes propagated

Multicast on multi-access broadcast networks

Why Areas - OSPF Example

Topology of an area is invisible from outside of the area

Results in marked reduction in routing traffic

APRICOT'99 © 1999, Cisco Systems, Inc.

www.cisco.com

Scalable Network Design

ISIS

Implement level1 - level 2/level 1 hierarchy for large networks only

OSPF

Implement area hierarchy

Addressing Plan

Route Summarisation

When to Use OSPF or ISIS

- Very large, complex networks
- VLSM
- For fast convergence
- Complex network design
- Adherence to IETF standards

Internet Routing Protocols

• IP routing protocols are characterised as

Name	Туре	Proprietary	Function	Updates	Metric	VLSM	Summ
RIP	DV	No	Interior	30 Sec	Hops	No	Auto
RIPV2	DV	No	Interior	30 Sec	Hops	Yes	Auto
IGRP	DV	Yes	Interior	90 Sec	Comp	No	Auto
EIGRP	Adv DV	Yes	Interior	Trig	Comp	Yes	Both
OSPF	LS	No	Interior	Trig	Cost	Yes	Man
IS-IS	LS	No	Int/Ext	Trig	Cost	Yes	Auto
BGP	DV	No	Exterior	Trig	N/A	N/A	Man

Which IGP?

- Larger older ISPs prefer ISIS
- Many newer ISPs prefer OSPF
- Some large ISP networks use EIGRP

Your choice

all three have strengths and weaknesses

all three are being actively developed

APRICOT'99 © 1999, Cisco Systems, Inc.

www.cisco.con

BGP for ISPs

BGP Basics

BGP General Operation

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the IP forwarding table
- Policies applied by influencing the best path selection

External BGP Peering (eBGP)

- Between BGP speakers in different AS
- Should be directly connected

Internal BGP Peering (iBGP)

APRICOT'99 © 1999, Cisco Systems, Inc.

Stable iBGP peering loopback interface

BGP Attributes

Describes characteristics of a prefix

• Some BGP attributes:

AS path, Next hop, Local preference, Multi-Exit Discriminator (MED) and Community.

- Some are mandatory
- Some are transitive

AS-Path

Next Hop

www.cisco.com

iBGP Next Hop

Next hop not changed

www.cisco.com

Next Hop (more)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Allows IGP to make intelligent forwarding decision

Local Preference

- Local to an AS
- Used to influence BGP path selection
- Path with highest local preference wins

Local Preference

Multi-Exit Discriminator

- Non-transitive
- Used to convey the relative preference of entry points
- Influences best path selection
- Comparable if paths are from same AS
- IGP metric can be conveyed as MED

Multi-Exit Discriminator (MED)

Community

- Used to group destinations
- Represented as two 16bit integers
- Each destination could be member of multiple communities
- Community attribute may be carried across AS's
- Useful in applying policies

Community

Communities (Continued)

- Aggregation results in loss of information
- Next hop information is lost
- Normally more specific routes are leaked to neighbouring AS
- More specifics manually filtered in neighbouring AS

Communities (Continued)

Well-known communities

 no-export - don't send to next AS
 no-advertise - don't send to a peer
 local-as - keep in local AS
 internet - everything

Origin

- Conveys the origin of the prefix
- Influence best path selection
- Three values IGP, EGP, incomplete
 - **IGP generated from iBGP**
 - **EGP generated from EGP**
 - incomplete generated by other process

BGP Path Selection Algorithm - Cisco Routers

- Do not consider path if no route to next hop
- Highest local preference (global within AS)
- Shortest AS path
- Lowest origin code
 IGP < EGP < incomplete

BGP Path Selection Algorithm (continued)

Multi-Exit Discriminator

Considered only if paths are from the same AS

- Prefer eBGP path over iBGP path
- Path with shortest next-hop metric wins
- Lowest router-id

BGP Path Selection

BGP TABLE IN AS-201: 192.68.1.0/24 150.1.1.1 160.1.1.1

A's IP TABLE: 192.68.1.0/24 150.1.1.1

B's IP TABLE: 192.68.1.0/24 160.1.1.1

C's IP TABLE: Either one depending on IGP metric to next-hop

BGP Path Selection - more

- AS 200 preferred path
- AS 300 backup
- To achieve this, increase AS path length to AS300 by AS_PATH prepend

APRICOT'99 © 1999, Cisco Systems,

www.cisco.com

Applying Policy with BGP

- Policy-based on AS path, community or the prefix
- Rejecting/accepting selected routes
- Set attributes to influence path selection

Multi-Homed AS

multiple sessions to same ISP

secondary only for backup

load-share between primary and secondary

selectively use different ISPs

www.cisco.com

Multiple Sessions to an ISP

- Simplest scheme is to use defaults
- Learn/advertise prefix for better control

Multiple Session to ISPs

- Difficult to achieve load sharing
- Point default towards one ISP
- Learn selected prefixes from second ISP
- Modify the number of prefixes learnt to achieve acceptable load sharing

BGP in ISP Backbones

- All routers take part in BGP
- BGP carries some or all of the Internet routing table
- IGPs are used to carry next hop and internal network information
- Routes are never redistributed from BGP into IGP
- Recursive route lookup

Scaling Techniques

 Administrative scaling Communities - already mentioned
 Router resource scaling Route Reflectors Confederations

Route Flap Dampening

- Need to avoid routing loop
- Solution should not change current behaviour
- Two solutions: route reflector and confederation

Route Reflector

Non-meshed clients

Route Reflector

- Divide the backbone into multiple clusters (hint - build on OSPF/ISIS areas)
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

Route Reflector: Benefits

- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

Route Reflector: Migration

Migrate small parts of the network, one part at a time.

www.cisco.com

Route Reflector: Path Diversity

- Best path is selected by the route reflector before being passed on to clients.
- Entry points should be in different clusters so the core knows all possible exits.

APRICOT'99 © 1999, Cisco Systems, Inc.

www.cisco.com

Confederations: Principle

- Best path sent to neighbour sub-AS
- Packet forwarding depends on next hop
- IGP carries next hops and local networks
- Preserve next hop across sub-AS eBGP
- Local preference and MED influence path selection
- Preserve local preference and MED across sub-AS boundary
- Sub-AS eBGP path administrative distance

Confederations: Next Hop

Confederations: AS-Sequence

APRICOT'99 © 1999, Cisco Systems, Inc. www.cisco.com

Confederations: Benefits

- Solves iBGP mesh problem
- Packet forwarding not affected
- Can be used with route reflectors
- Policies could be applied to route traffic between sub-AS's

Confederations: Caveats

- Minimal number of sub-AS
- Sub-AS hierarchy
- Minimal inter-connectivity between sub-AS's
- Path diversity

Confederations: Path Diversity

Route flap

Going up and down of path

Change in attribute

- Ripples through the entire Internet
- Wastes CPU
- Reduce scope of route flap propagation

- Fast convergence for normal route changes
- History predicts future behaviour
- Suppress oscillating routes
- Advertise stable suppressed routes
- Described in RFC2439

- Add penalty for each flap. Exponentially decay penalty
- Penalty above suppress-limit do not advertise up route
- Penalty decayed below reuse-limit advertise route

www.cisco.com

- Done only for external path
- Alternate paths still usable
- Suppress-limit, reuse-limit, maximum suppress time, and half-life time give control
- Variable dampening

see RIPE-178 document for parameters

Soft Reconfiguration

Problem:

- BGP peering reset after every policy change because the router does not store advertised prefixes that are denied by a filter
- BGP peering reset consumes CPU and affects connectivity for all networks

Soft Reconfiguration

Solution:

- Soft-reconfiguration
- New policy (in and out) is activated without clearing the peering session
- Per-neighbour basis
- Use more memory to keep prefixes whose attributes have been changed or not accepted

Future Plans for BGP

- Integration with Tag Switching/MPLS
- Multiprotocol support
 - IPv6 beta test images available
 - multicast part of IOS 12.0S

CLNS

Multihoming enhancements

Routing Design for ISPs
Network Design

- Aim for simplicity, scalability and reliability
- Plan the network coverage
- Growth over the next year
- Design the network

Network Coverage

- Where will you start and how?
- Where will it grow?
 - One year is a long time in the Internet
 - **Future PoP sites**
- How big will it grow?

Inter-site bandwidth availability

• Does it match the business plan?

Network Design

- Start as you mean to continue
- Design scalability from day one hierarchy separate functions
- Choose your IGP carefully scalability, standards
 knowledge and expertise

Designed in Redundancy

- Two of everything is a good maxim
- Each site should have at least two backbone WAN connections
- Consider two core routers for each backbone site
- Don't forget the Out of Band management network
- Documentation!

Address Space

- Approach upstream ISP or RIR for address space
- Supply addressing plan when requested remember Internet is classless
 - addresses assigned according to need not desire
- Assign addresses to backbone and other network layers - remember scalability!

Deploying IGP

• Keep IGP small!

Smaller IGP, faster convergence in case of link problems

- Use summarisation between areas of network hierarchy
- Use ip unnumbered where possible

External Connections

Don't need BGP from day one

apply for an AS and deploy BGP only when it is needed i.e. when multihoming

When deploying BGP

iBGP carries customer networks only

IGP carries network link information only

Do not distribute BGP routes into IGP and vice-versa

Routing Etiquette

Routing Etiquette

Motivation

- CIDR and aggregation
- "The Swamp"
- Renumbering
- Dampening
- NAT

"Problems on the Internet"

 Concern about rate of Internet growth http://www.nw.com/zone/WWW/report.html

Large number of routes

http://www.employees.org/~tbates/cidr.plot.html

Routing instability

http://www.merit.edu/ipma/reports

- Difficulties diagnosing problems
- Quality of Service

APRICOT'99 © 1999, Cisco Systems, Inc.

Effects of CIDR on Internet

- Currently around 56000 routes
- If Internet were unaggregated Would be over 200000 networks What size of routers required? How stable would the Internet be?

CIDR - Examples

- Announce network block assigned by Registry or upstream ISP
- Do not announce subnets of network block, or subnets of other ISPs' network blocks unless exceptional circumstances
- On Cisco routers use

redistribute static, or aggregate-address, or network/mask pair

APRICOT'99 © 1999, Cisco Systems, Inc.

CIDR – Examples

Redistribute static	router bgp 1849 network 194.216.0.0 redistribute static ! Must have a matching IGP route ip route 194.216.0.0 255.255.0.0 null0
Aggregate address	router bgp 1849 network 194.216.0.0 aggregate-address 194.216.0.0 255.255.0.0 ! More specific route must exist in BGP table
Network/mask pair	router bgp 1849 network 194.216.0.0 mask 255.255.0.0 ! Must have a matching IGP route ip route 194.216.0.0 255.255.0.0 null0

CIDR - Positive Efforts

- Many ISPs filter prefixes longer than /24
- Some ISPs filter according to policy registered in the Internet Routing Registry
- No aggregation or bad aggregation could result in no connectivity

Aggregation

- Announce aggregate to rest of Internet
- Put it into Routing Registry (route object)
- Keep more specifics internal to network

Use iBGP for carrying customer networks

Use IGP for carrying backbone addresses

Aggregate internally when possible

APRICOT'99 © 1999, Cisco Systems, Inc.

Aggregation - Good Example

 Customer link goes down their /26 network becomes unreachable

/19 aggregate is still being announced

no BGP hold down problems

no BGP propagation delays

no dampening by other ISPs

Aggregation - Good Example

- Customer link returns
- Their /26 network is visible again
- The whole Internet becomes visible immediately
- Quality of Service perception

Aggregation - Bad Example

Customer link goes down

Their /23 network becomes unreachable

 Their ISP doesn't aggregate their /19 network block

/23 network withdrawal announced to peers

starts rippling through the Internet

added load on all Internet backbone routers as network is removed from routing table

Aggregation - Bad Example

Customer link returns

Their /23 network is now visible to their ISP

Their /23 network is re-advertised to peers

Starts rippling through Internet

Load on Internet backbone routers as network is reinserted into routing table

Some ISP's dampen flaps

Internet may take 10-20 min or longer to be visible

Quality of Service???

Aggregation - Summary

- Good example is what everyone should do!
 - Adds to Internet stability
 - **Reduces size of routing table**
 - **Reduces routing churn**
 - Improves Internet QoS for everyone
- Bad example is what many still do!
 - Laziness? Lack of knowledge?

APRICOT'99 © 1999, Cisco Systems, Inc

"The Swamp"

- So called areas of poor aggregation
- 192/8 worst offender for routed networks
- 192/3 space has 43500 networks rest of Internet has 12000 networks

Block	Networks	Block	Networks	Block	Networks	Block	Networks
192/8	6248	198/8	4031	204/8	2708	210/8	402
193/8	2389	199/8	3504	205/8	2577	211/8	0
194/8	2855	200/8	1330	206/8	2858	212/8	672
195/8	1415	201/8	0	207/8	2401	213/8	1
196/8	517	202/8	2269	208/8	1570	214/7	5
197/8	1	203/8	3609	209/8	1151	216/8	905

Swamp Cause

- Early growth of Internet
- Classful network allocation
- No policies to prevent hoarding of address space
- Lack of foresight by all
- Small number of connected networks

Swamp Persists

- Lazy or technically naïve ISPs
- Unannounced allocated networks
- Perceived market impact
- Technical solutions keep ahead of problem so far:

faster routers, more memory, CIDR

Solutions

- Don't route 192/8 or other ISP's address space
- Aggregate!
- Don't announce subnets of your assigned block
- Be prudent when announcing prefixes smaller than /16 out of former B space

Solutions

Encourage other ISPs to be good citizens

don't route their bad citizenship

Multihoming

fragments address space

think carefully about set up and requirements

load balancing versus resilience

http://infopage.cw.net/Routing

- Tony Bates' CIDR report sent to nanog, apops and eof mail lists
- Regional Internet Registries
- Many ISPs
- Peer pressure
- YOU!

Renumbering - motivation

 Same as motivation for aggregation holes are bad, using swamp space

First time Internet connection

legal address space, practical addressing scheme

New Provider

renumber into new provider's block

reduces fragmentation and improves routability

Renumbering - how to?

PIER - Procedures for Internet and Enterprise Renumbering

http://www.isi.edu/div7/pier/papers.html

Be aware of effect on essential services

e.g. DNS ttl requires lowering, router filters

- Use DHCP, secondary addressing
- Not difficult but needs planning

Route Flap Dampening

Route Flap

technical description earlier

 Many ISPs now suppress route flaps at network borders

Cisco BGP Case Study at

http://www.cisco.com/warp/public/459/16.html

Recommended parameters are at

http://www.ripe.net/docs/ripe-178.html

APRICOT'99 © 1999, Cisco Systems, Inc.

Route Flap Dampening -Caution

- Be aware of potential problems
- Unreachability could be due to dampening, not disconnection
- Border routers need more memory and CPU
- Train your staff!

Network Address Translation

ftp://ftp.isi.edu/in-notes/rfc1631.txt

- Used by firewalls and simpler gateway systems
- Avoids the need for renumbering
- Helps conserve address space
- Much concern about the "concept" at IETF and elsewhere

APRICOT'99 © 1999, Cisco Systems, Inc.

Filtering Policies

Filter announcements by peers

AS list, prefixes

Only accept what is listed in routing registry

avoids configuration errors and routing problems authorisation?

- Only announce what you list in routing registry
- Keep routing registry and filters up to date

APRICOT'99 © 1999, Cisco Systems, Inc.

Filtering Policies - Prefix

Don't announce or accept RFC1918 networks

Don't announce or accept Martian networks

access-list 110 deny ip 10.0.0.0 0.255.255.255 255.0.0.0 0.0.0.255 access-list 110 deny ip 127.0.0.0 0.0.0.255 255.255.255.0 0.0.0.255 access-list 110 deny ip 169.254.0.0 0.0.255.255 255.255.0.0 0.0.255.255 access-list 110 deny ip 172.16.0.0 0.15.255.255 255.240.0.0 0.15.255.255 access-list 110 deny ip 192.0.2.0 0.0.0.255 255.255.255.0 0.0.0.255 access-list 110 deny ip 192.168.0.0 0.0.255.255 255.255.0.0 0.0.255.255 access-list 110 deny ip 224.0.0.0 31.255.255 224.0.0.0 31.255.255 access-list 110 deny ip 224.0.0.0 31.255.255.255 224.0.0.0 31.255.255 access-list 110 deny ip any 255.255.128 0.0.0.127

Prefix Length Filtering

- Minimum prefix length filtering most ISPs filter prefixes longer than /24
- Reduces size of routing table
- Smaller prefixes more likely to flap

The Internet Routing Registry

Definition

 "A public an authoritative distributed repository of information"

Public databases

Distributed repository of information

Have authoritative data

Vendor independent
Composition

- Routing Policy Details
- Routes and their aggregates
- Topology Linking AS's
- Network components such as routers
- Is separate from other information such as domains and networks

Relationship Table

Registry	Routing Policy	Routes	Networks	Domains
APNIC	Yes	No	Yes	No
RIPE	Yes	Yes	Yes	Yes
RADB	Yes	Yes	No	No
MCI	Yes	Yes	No	No
ANS	Yes	Yes	No	No
CA*NET	Yes	Yes	No	No
ARIN	Yes	Yes	Yes	No
InterNIC	No	No	No	Yes

Relationships

- MCI, ANS and CA*Net provider run RRs
- RIPE RR European providers
- ARIN RR launched 8 February 1999
- RADB Default RR for rest of world
- APNIC plans to be full member of IRR very soon.

Benefits of an IRR

- Operational Support
- Information
- Configuration
- Problem diagnosis
- Improved Service Quality
- Tools for consistency checking

Information

- Routing policy repository
- "Map of global routing topology"
- Routing policy between neighbouring AS's
- Device independent description of routing policy

Configuration

- Supports network filtering
- Configures routers and policies
- Revision control
- Sanity checking
- Simulation

Improved Quality of Service

All this adds up to improved quality of service

Participation is essential!

www.cisco.com

Key Objects and Syntax of RIPE-181

- Representation
- AS Object
- AS Macro
- Route Object
- Authorisation Maintainer Object

Representation

- ASCII printable
- Attributes by tag:value lines
- Objects separated by empty lines
- RIPE-181
- RPSL (not covered)

Real World Example!

AS-Object

aut-num:	AS5599
descr:	Azlan Scandinavia
descr:	Internet Business Unit
descr:	Glostrup NOC
as-in:	from AS1849 100 accept AS-PIPEXEURO
as-in:	from AS1835 100 accept AS1835
as-in:	from AS2863 100 accept AS2863
as-in:	from AS3292 100 accept AS-DKNET AS3292
as-in:	from AS3308 100 accept AS3308
as-in:	from AS5492 100 accept AS5492
as-in:	from AS5509 100 accept AS5509
as-in:	from AS6785 100 accept AS6785
as-in:	from AS6834 100 accept AS6834
as-in:	from AS8526 100 accept AS8526
as-in:	from AS8385 100 accept {146.188.0.0/16}

as-out:	to AS1849 announce AS5599
as-out:	to AS1835 announce AS5599
as-out:	to AS2863 announce AS5599
as-out:	to AS3292 announce AS5599
as-out:	to AS3308 announce AS5599
as-out:	to AS5492 announce AS5599
as-out:	to AS5509 announce AS5599
as-out:	to AS6785 announce AS5599
as-out:	to AS6834 announce AS5599
as-out:	to AS8526 announce AS5599
as-out:	to AS8385 announce AS5599
default:	AS8385 100
admin-c:	MW89-RIPE
tech-c:	KE30-RIPE
mnt-by:	AS5599-MNT
changed:	klaus@azlan.net 970207
changed:	klaus@azlan.net 971209
source:	RIPE

Connection to exchange point Connection transit provider Connection to backup provider

Syntax for AS Object

 Can represent policy using **Boolean expressions (AND, OR, NOT)** Keyword ANY - means "everything" **Communities and AS Macros Route lists - {prefixes}** Cost to indicate preference Attribute DEFAULT - accept 0.0.0.0

Fields in AS Object

Mandatory Fields

aut-num, descr, admin-c, tech-c, mnt-by, changed, source, as-in, as-out

Optional Fields

as-name, interas-in, interas-out, asexclude, default, guardian, remarks, notify

IP Routing Policy

- Relationship between AS's
- What to announce to each neighbour
- What to accept from each neighbour
- Selection between multiple paths
- Preferred paths
- Use default route?

Basic Policy Example

aut-num: AS5599

as-in: from AS8385 100 accept {146.188.0.0/16} as-out: to AS8385 announce AS5599

aut-num: AS8385

as-in: from AS5599 100 accept AS5599 as-out: to AS5599 announce {146.188.0.0/16}

Transit Policy Example

aut-num: AS8385

as-in:	from AS702 100 acc	cept ANY

as-in: from AS5599 100 accept AS5599

as-out: to AS702 announce AS8385 AS5599 AS8473 AND NOT {0.0.0/0}

as-out: to AS5599 announce {146.188.0.0/16}

default: AS702 50 {146.188.0.0/16}

aut-num: AS702

as-in: from AS8385 100 accept AS8385 AS5599 AS8473

as-out: to AS8385 announce ANY

Multihoming Policy Example

aut-num: AS5599

as-in: from AS1849 100 accept AS-PIPEXEURO as-in: from AS8385 100 accept {146.188.0.0/16} as-out: to AS8385 announce AS5599 as-out: to AS1849 announce AS5599

aut-num: AS1849

as-in: from AS5599 100 accept AS5599 as-out: to AS5599 announce AS-PIPEXEURO

aut-num: AS8385

as-out: to AS5599 announce {146.188.0.0/16} as-in: from AS5599 100 accept AS5599

Exchange Point Policy Example

aut-num: as-out:	AS5599 to AS1835 announce AS5599
as-out:	to AS2863 announce AS5599
as-out:	to AS3308 announce AS5599
as-out:	to AS5492 announce AS5599
as-out:	to AS5509 announce AS5599
as-out:	to AS6785 announce AS5599
as-out:	to AS6834 announce AS5599
as-out:	to AS8526 announce AS5599

Other service providers

AS Macro

- Collection of AS's or other AS macros
- Describes membership of a set
- Contains no policy info
- Scales better
- Can differentiate between customer and peer routes

Fields in AS Macro

Mandatory Fields

as-macro, descr, as-list, tech-c, admin-c, mnt-by, changed, source

Optional Fields

guardian, remarks, notify

AS Macro

as-macro:	AS-UUNETSTK
descr:	UUNET customer routes in Stockholm
as-list:	AS-TAIDE
as-list:	AS-KOLUMBUS
as-list:	AS1759
as-list:	AS8385
as-list:	AS702
tech-c:	KCH251
admin-c:	ES199
remarks:	AS702 Stockholm routes are community tagged
notify:	intl-net-eng@uu.net
mnt-by:	UUNET-MNT
changed:	annel@uu.net 971113
source:	RIPE

Used in

aut-num:	AS702
as-out:	to AS1759 announce AS-UUNETSTK

Route Object

- Represents a route in the Internet
- Contains all membership information
- Only one origin possible
- Classless (should be aggregated)
- Can support holes and withdrawn

Fields in Route Object

Mandatory Fields

route, descr, origin, mnt-by, changed, source

Optional Fields

hole, withdrawn, comm-list, remarks, notify

• Example:

route:	195.129.0.0/19
descr:	UUNET-NET
origin:	AS702
remarks:	UUNET filter inbound on prefixes longer than /24
notify:	intl-net-eng@uu.net
mnt-by:	UUNET-MNT
changed:	annel@uu.net 970501
source:	RIPE

Route Object

route:	194.216.0.0/16
descr:	PIPEX-BLOCK194216
origin:	AS1849
hole:	194.216.59.0/24
remarks:	UUNET UK filter inbound on prefixes longer than /24
mnt-by:	AS1849-MNT
changed:	philip@uk.uu.net 19980107
source:	RIPE

stk-gw1>show ip bgp 194.216.0.0 255.255.0.0 longer-prefixes BGP table version is 53607058, local router ID is 195.242.36.254 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP, ? - incomplete

Network	Next Hop	Metric LocPrf Weigh	nt Path
*> 194.216.0.0/16	146.188.30.162	2 0	702 1849 i
*> 194.216.59.0	146.188.30.162	2 0	702 701 3491 5557 i

How to register and update information in the IRR

- Frequently used objects
- Update procedures
 - **Modifying Objects**
 - **Deleting Objects**
 - **Submitting Objects**
 - **Authorisation/Notification**
 - **Errors and Warnings**
 - **NIC** handles

Frequently Used Objects

- Person contact person
- Maintainer authorisation of objects
- Inetnum address assignment
- Aut-num autonomous systems
- AS-macro set of AS's
- Route announced routes

Unique Keys

- Uniquely identifies an object
- Updating object overwrites old entry need unique key
- Used in querying whois
- Web based full text searches available now

Unique Keys

- Person name plus NIC handle
- Maintainer maintainer name
- Inetnum network number
- Aut-num AS number
- AS-macro AS macro name
- Route route value plus origin

Modifying an Object

Before

Submitted and After

person:	Philip F. Smith	person:	-
address:	UUNET UK	address:	C
address:	Internet House	address:	L
address:	332 Science Park	address:	E
address:	Milton Road	address:	C
address:	Cambridge CB4 4BZ	address:	A
address:	England, UK	phone:	+
phone:	+44 1223 250100	fax-no:	+
fax-no:	+44 1223 250101	e-mail:	p
e-mail:	philip@uk.uu.net	e-mail:	p
nic-hdl:	PFS2-RIPE	nic-hdl:	F
notify:	philip@uk.uu.net	notify:	р
changed:	philip@uk.uu.net 19971202	changed:	p
source:	RIPE	source:	F

- person:Philip F. Smithaddress:Cisco Systems Australiaaddress:Level 13, 80 Albert Streetaddress:Brisbane 4000address:QLDaddress:Australiaphone:+61 7 3238 8202fax-no:+61 7 3211 3889e-mail:pfs@cisco.come-mail:philip@dial.pipex.comnotify:philip@dial.pipex.comnotify:philip@cisco.comsource:RIPE
- Unique keys must stay the same
- Remember to use current date
- NIC handle mandatory

www.cisco.com

Deleting an Object

person:	Philip F. Smith
address:	UUNET UK
address:	332 Science Park
address:	Milton Road
address:	Cambridge
address:	England, UK
phone:	+44 1223 250100
fax-no:	+44 1223 250101
e-mail:	philip@uk.uu.net
nic-hdl:	PFS2-RIPE
notify:	philip@uk.uu.net
changed:	philip@uk.uu.net 19971202
source:	RIPE
delete:	philip@dial.pipex.com left company

- delete deletes object from database
- current object must be submitted exactly as is, only with extra delete line
- If there is a mnt-by line, need the password!

Submitting Objects

• Email Interface - eg APNIC

auto-dbm@apnic.net

Robot mail box

Send all database updates to this mailbox

Can use LONGACK and HELP in the subject line

apnic-dbm@apnic.net

human mailbox

questions on the database process

Authorisation/Notification

route:	194.216.0.0/16
descr:	PIPEX-BLOCK194216
origin:	AS1849
hole:	194.216.59.0/24
remarks:	UUNET UK filter inbound on prefixes longer than /24
mnt-by:	AS1849-MNT
notify:	support@uk.uu.net
changed:	philip@uk.uu.net 19980107
source:	RIPE

- mnt-by the maintainer object
- notify who is notified of changes

Maintainer Object

- Who is authorised
- Authorisation Method

email-from and crypt-pw

Mandatory Fields

mntner, descr, admin-c, tech-c, upd-to, auth, mnt-by

Optional Fields

mnt-nfy, changed, notify, source

APRICOT'99 © 1999, Cisco Systems, Inc.

www.cisco.com

Maintainer Object

Maintainer Object AS1849-MNT

mntner:	AS1849-MNT
descr:	AS 1849 Maintainer - PIPEX UK
admin-c:	PFS2-RIPE
tech-c:	PFS2-RIPE
upd-to:	philip@uk.uu.net
mnt-nfy:	netdev@uk.uu.net
auth:	CRYPT-PW fjOImdmwKsx
mnt-by:	AS1849-MNT
changed:	philip@uk.uu.net 19980109
source:	RIPE

Object has to be registered manually

Authorisation/Notification

route:	194.216.0.0/16
descr:	PIPEX-BLOCK194216
origin:	AS1849
hole:	194.216.59.0/24
hole:	194.216.136.0/23
remarks:	UUNET UK filter inbound on prefixes longer than /24
mnt-by:	AS1849-MNT
passwd:	c4Ange5
notify:	support@uk.uu.net
changed:	philip@uk.uu.net 19980109
source:	RIPE

- New hole to be added.
- passwd field to allow change
- <support@uk.uu.net> will be notified of this change
- updated changed field
Warnings and Errors

Warnings

Object corrected then accepted

Notification of action taken sent in acknowledgement

Errors

Object not corrected and not accepted Diagnostics in acknowledgement

Syntax checking is very strict

NIC Handles

mntner: descr: admin-c: tech-c: upd-to: upd-to: mnt-nfy: auth: mnt-by:	AS1849-MNT AS 1849 Maintainer - PIPEX UK PFS2-RIPE philip@uk.uu.net netdev@uk.uu.net CRYPT-PW fjOImdmwKsx AS1849-MNT
auth: mnt-by:	AS1849-MNT
changed: source:	philip@uk.uu.net 19980109 RIPE

- **PFS2-RIPE** is the NIC Handle of the person
- Only way of avoiding ambiguity in person objects
- Mandatory
- Format: <initials><number>-<regional registry>
- Local differences for obtaining NIC Handles.

What tools and resources?

RAToolset

www.isi.edu/ra/RAToolSet

RIPE whois

ftp.ripe.net/ripe/tools

Looking Glasses

nitrous.digex.net

RAToolSet

- Runs on most Unix platforms
- Requires g++, tcl and tk
- Excellent for housekeeping, debugging and configuration

RAToolSet Tools

RTconfig

Generate router configurations

AOE - aut-num object editor

update aut-num, as-macro objects

• ROE - route-object editor

update route-object

CIDRadvisor

www.cisco.com

ROE Uses

Route object editor used to:

check for consistency of route objects in IRRs

synchronise route object entries in different IRRs

detect missing or unwanted route objects

ROE example

		roe			7 4		
File Show Selection Configure							
198.22.164.0/24	MCI:AS226						
198,32,0,0/16	MCI:AS226						
198,32,0,0/23	MCI:AS226	RADB:AS226					
198,32,0,0/24	MCI:AS226						
198,32,1,0/24	MCI:AS226						
198.32.2.0/24	MCI:AS226						
198,32,4,0/23	MCI:AS226						
198.32.4.0/24	MCI:AS226						
198.32.6.0/24	MCI:AS226						
198,32,146,0/23	MCI:AS226						
MCI AS226 RADB AS226							
route: 198.32.0.0/23			1				
descr: NETBLK-RA							
origin: AS226							
advisory: AS690 1:3561 2:1/40							
mpt-by: IN-MAINT-MCT							
changed: Prue@isi.edu 950420							
source: MCI							
		M			M		
Add Template Delete Template Update Templa	ate	Schedule	Cancel		Update IRR		
					Pending Replies: 0		

AOE Uses

AS Object editor used to:

generate AS objects and policies as-in and as-out

check policies listed in AS object on the IRRs

check policies according to BGP dump

AOE example

PRtraceroute

- PRIDE modified traceroute which includes AS information and a comparison between the real route and the route according to the IRR.
- Cisco IOS trace command refers to BGP table

PRtraceroute Example

% prtraceroute -lv collegepk-cr9.bbnplanet.net traceroute with AS and policy additions [Jan 13 20:21:19 UTC]

from AS109 lovefm.cisco.com (171.68.228.35)
to AS86 collegepk-cr9.bbnplanet.net (192.239.103.9)

1AS109al.cisco.com171.68.228.3[I] 4 1 1 ms2AS109acorn.cisco.com171.68.0.134[I] 2 1 1 ms3AS109gaza-gw2.cisco.com171.68.0.91[I] 2 1 1 ms4AS109sj-wall-2.cisco.com198.92.1.138[I] 3 3 2 ms5AS109barrnet-gw.cisco.com192.31.7.37[I] 4 4 3 ms7AS200paloalto-cisco.bbnplanet.net131.119.26.9[?] 4 4 3 ms7AS200paloalto-brl.bbnplanet.net131.119.0.193[I] 7 8 7 ms8AS1chicago2-brl.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-brl.bbnplanet.net128.167.252.9[E1] 86 81 msASPath followed:AS109 AS200 AS1 AS86ERRORhop should not have been taken NH ASxAS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western Region AS1 = BBN Planet backbone AS86 = SURAnet Northern ASEnnth choice inter AS hop DnAS86 = SURAnet Northern ASCconnected hop ?No information in IRR							
2AS109acorn.cisco.com171.68.0.134[I] 2 1 1 ms3AS109gaza-gw2.cisco.com171.68.0.91[I] 2 1 1 ms4AS109sj-wall-2.cisco.com198.92.1.138[I] 3 3 2 ms5AS109barrnet-gw.cisco.com192.31.7.37[I] 4 3 2 ms6AS200paloalto-cisco.bbnplanet.net131.119.26.9[?] 4 4 3 ms7AS200paloalto-br1.bbnplanet.net131.119.0.193[I] 7 8 7 ms8AS1chicago2-br1.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-br1.bbnplanet.net4.0.1.6[I] 82 73 75 ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1] 86 81 msAS109 = Cisco SystemsAS200 AS1 AS86ERRORhop should not have been taken NH ASx possible NEXT_HOP followedAS109 = Cisco SystemsAS200 = BEN Planet Western Region AS1 = BEN Planet backbone AS86 = SURAnet Northern ASEnnth choice inter AS hop Dn nth choice default hop C connected hop ?No information in IRR	1	AS109	al.cisco.com	171.68.228.3	3 [I] 4 1 1 ms		
3AS109gaza-gw2.cisco.com171.68.0.91[I] 2 1 1 ms4AS109sj-wall-2.cisco.com198.92.1.138[I] 3 3 2 ms5AS109barrnet-gw.cisco.com192.31.7.37[I] 4 3 2 ms6AS200paloalto-cisco.bbnplanet.net131.119.26.9[?] 4 4 3 ms7AS200paloalto-br1.bbnplanet.net131.119.0.193[I] 7 8 7 ms8AS1chicago2-br1.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-br1.bbnplanet.net4.0.1.6[I] 82 73 75 ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1] 86 81 msAS109 = Cisco SystemsAS109 AS200 AS1 AS86ERRORhop should not have been taken NH ASxAS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western Region AS1 = BEN Planet backbone AS86 = SURAnet Northern ASEnnth choice inter AS hop DnAS86 = SURAnet Northern ASCconnected hop ?No information in IRR	2	AS109 acorn.cisco.com		171.68.0.134	[I] 2 1 1 ms		
4AS109sj-wall-2.cisco.com198.92.1.138[I] 3 3 2 ms5AS109barrnet-gw.cisco.com192.31.7.37[I] 4 3 2 ms6AS200paloalto-cisco.bbnplanet.net131.119.26.9[?] 4 4 3 ms7AS200paloalto-br1.bbnplanet.net131.119.0.193[I] 7 8 7 ms8AS1chicago2-br1.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-br1.bbnplanet.net4.0.1.6[I] 82 73 75 ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1] 86 81 msAS109= Cisco SystemsAS109 AS200 AS1 AS86ERRORhop should not have been taken NH ASx possible NEXT_HOP followedAS109= Cisco SystemsIintra AS hopAS200= BBN Planet Western Region AS1= BBN Planet backbone AS86Ennth choice inter AS hop DnAS86= SURAnet Northern ASCconnected hop ?No information in IRR	3	3 AS109 gaza-gw2.cisco.com		171.68.0.91	[I] 2 1 1 ms		
5AS109barrnet-gw.cisco.com192.31.7.37[I] 4 3 2 ms6AS200paloalto-cisco.bbnplanet.net131.119.26.9[?] 4 4 3 ms7AS200paloalto-br1.bbnplanet.net131.119.0.193[I] 7 8 7 ms8AS1chicago2-br1.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-br1.bbnplanet.net4.0.1.6[I] 82 73 75 ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1] 86 81 msAS Path followed:AS109 AS200 AS1 AS86ERRORhop should not have been taken NH ASxAS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western Region AS1 = BBN Planet backbone AS86 = SURAnet Northern ASEnnth choice inter AS hop Dn0No information in IRR	4	AS109	sj-wall-2.cisco.com	198.92.1.138	3 [I] 3 3 2 ms		
6AS200paloalto-cisco.bbnplanet.net131.119.26.9[?] 4 4 3 ms7AS200paloalto-br1.bbnplanet.net131.119.0.193[I] 7 8 7 ms8AS1chicago2-br1.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-br1.bbnplanet.net4.0.1.6[I] 82 73 75 ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1] 86 81 msAS Path followed:AS109 AS200 AS1 AS86ERRORhop should not have been takenAS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western RegionEnnth choice inter AS hopAS1 = BBN Planet backboneDnnth choice default hopAS86 = SURAnet Northern ASCconnected hop?No information in IRR	5	AS109	barrnet-gw.cisco.com	192.31.7.37	[I] 4 3 2 ms		
7AS200paloalto-br1.bbnplanet.net131.119.0.193[I] 7 8 7 ms8AS1chicago2-br1.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-br1.bbnplanet.net4.0.1.6[I] 82 73 75 ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1] 86 81 msASPath followed: AS109 AS200 AS1 AS86ERRORhop should not have been takenAS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western RegionEnnth choice inter AS hopAS1 = BBN Planet backboneDnnth choice default hopAS86 = SURAnet Northern ASCconnected hopParticipationParticipationRR	6	AS200	paloalto-cisco.bbnplanet.net	131.119.26.9) [?] 4 4 3 ms		
8AS1chicago2-br1.bbnplanet.net4.0.1.2[E1] 58 59 58 ms9AS1collegepk-br1.bbnplanet.net4.0.1.6[I] 82 73 75 ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1] 86 81 msASPath followed: AS109 AS200 AS1 AS86ERRORhop should not have been taken NH ASx possible NEXT_HOP followedAS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western Region AS1 = BBN Planet backboneEnnth choice inter AS hop DnAS86 = SURAnet Northern ASCconnected hop ?No information in IRR	7	AS200	paloalto-br1.bbnplanet.net	131.119.0.19	93 [I] 7 8 7 ms		
9AS1collegepk-br1.bbnplanet.net4.0.1.6[I]827375ms10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1]8681msASPath followed:AS109AS200AS1AS86ERRORhop should not have been taken NH ASx possible NEXT_HOP followed IAS109CiscoSystemsIintra AS hopAS200BBNPlanetWestern Region AS1Ennth choice inter AS hop DnEnAS86SURAnetNorthern ASCconnected hop ?No information in IRR	8	AS1	chicago2-br1.bbnplanet.net	4.0.1.2	[E1] 58 59 58 ms		
10AS86collegepk-cr9.bbnplanet.net128.167.252.9[E1]8681 msAS Path followed: AS109 AS200 AS1 AS86ERROR hop should not have been taken NH ASx possible NEXT_HOP followed I intra AS hopNH ASx possible NEXT_HOP followed I intra AS hopAS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western Region AS1 = BBN Planet backboneEnnth choice inter AS hopAS86 = SURAnet Northern ASCconnected hop ?No information in IRR	9	AS1	collegepk-br1.bbnplanet.net	4.0.1.6	[I] 82 73 75 ms		
AS Path followed: AS109 AS200 AS1 AS86 AS109 = Cisco Systems AS200 = BBN Planet Western Region AS1 = BBN Planet backbone AS86 = SURAnet Northern AS AS200 = SURAnet Northern AS AS200 = SURAnet Northern AS AS200 = SURAnet Northern AS AS200 = Cisco Systems AS200 = Cisco Systems AS200 = Cisco Systems AS200 = BBN Planet Western Region AS200 = Cisco Systems AS200 = BBN Planet Western Region AS200 = Cisco Systems AS200 = Cisco Systems C C Connected hop ? No information in IRR	10	AS86	collegepk-cr9.bbnplanet.net	128.167.252.	9 [E1] 86 81 ms		
AS109 = Cisco SystemsIintra AS hopAS200 = BBN Planet Western RegionEnnth choice inter AS hopAS1 = BBN Planet backboneDnnth choice default hopAS86 = SURAnet Northern ASCconnected hop?No information in IRR	AS	Path fo	llowed: AS109 AS200 AS1 AS86	ERROR NH ASx	hop should not have been taken possible NEXT_HOP followed		
AS200 = BBN Planet Western RegionEnnth choice inter AS hopAS1 = BBN Planet backboneDnnth choice default hopAS86 = SURAnet Northern ASCconnected hop?No information in IRR	AS109 = Cisco Systems		I	intra AS hop			
AS1 = BBN Planet backboneDnnth choice default hopAS86 = SURAnet Northern ASCconnected hop?No information in IRR	AS200 = BBN Planet Western Region			En	nth choice inter AS hop nth choice default hop connected hop		
AS86 = SURAnet Northern AS C connected hop ? No information in IRR	AS1 = BBN Planet backbone			Dn			
? No information in IRR	AS86 = SURAnet Northern AS		C				
				?	No information in IRR		

www.cisco.com

RIPE whois client

- Runs on most (UNIX) platforms
- Easy to install
- Can use to query all other IRR's
- Expanded whois functionality
- Good for housekeeping, debugging, operations

• **RECOMMENDED!**

Open Issues

Why isn't the IRR used more today? Ignorance? Security fears? No local routing registry?
What tools are missing?

Tool Usage

- Are the available tools too complicated?
- Are there enough tools?
- Are there too many tools?
- Are they not sophisticated enough?

Tool Availability

- Are there other tools which should be available?
- Router to automatically rebuild configuration from routing registries?
- Router changes configuration as information in routing registries change?

Tool Availability

 Should software be available as a commercial package?

Better bundled/supported/debugged? Better integration/training?

 Most tools are freely available public efforts for the good of the "community"

Routing Registries

Belief that the Internet will work with out the IRR.

It will but for how long?

Many ISPs rely on the data kept in the registry

Subset of tools available are being used on a daily basis

Routing Registries

- Should each ISP run their own routing registry?
 - As mirror of their regional RR?
 - As part of the global IRR?
 - Must have a customer network database...
- Software availability, scalability, data integrity, security, etc...?

Training

- Is there enough training on the promotion of routability
- Headcount requirement

depends on organisation

too easy and cheaper to be irresponsible

 Overall organisational awareness of the issues -> overall efficiency, quality of service and support

Ways forward

• Support an APNIC routing registry! • AP ISPs use it to: configure border routers register networks and routing policy debug network and routing problems Service Provider Routing Registries

Ways forward

- Routing Registry enhancements
 RPSL matches today's BGP capabilities
- Feedback on tool enhancements
- Feedback to vendors on equipment configuration enhancements
- More training, more education, more feedback!

Summary

- ISP networks and terminology
- The application of IGPs and BGP in an Internet network
- Shown tools which help diagnose and solve routing problems more easily
- Application of routing registries

Summary

- Made you more aware of the issues facing the Internet today
- Showed you how to make a positive contribution to the functioning of the Internet
- Promoted Routability!

Thank You!

Any Questions?

www.cisco.com

Useful URL's & Reading

1. CIDR

ftp://ftp.isi.edu/in-notes/rfc{1517,1518,1519}.txt http://www.ibm.net.il/~hank/cidr.html ftp://ftp.uninett.no/pub/misc/eidnes-cidr.ps.Z Network addressing when using CIDR

2. AS numbers

ftp://ftp.isi.edu/in-notes/rfc1930.txt

Guidelines for creation, selection, and registration of an AS

3. Address Allocation and Private Internets

ftp://ftp.isi.edu/in-notes/rfc1918.txt

4. BGP Dampening

http://www.cisco.com/warp/public/459/16.html ftp://ftp.ripe.net/ripe/docs/ripe-178.txt

European recommendations for route flap dampening

ftp://engr.ans.net/pub/slides/nanog/feb-1995/route-dampen.ps

5. Routing Discussion

http://www.ripe.net/wg/routing/index.html

Useful URL's & Reading

6. Traceroute server repository

http://www.boardwatch.com/isp/trace.htm

7. ISP Tips

http://www.amazing.com/internet/faq.html http://www.cisco.com/public/cons/isp/

8. BGP Table

http://www.telstra.net/ops/bgptable.html http://www.employees.org/~tbates/cidr.hist.plot.html http://www.merit.edu/ipma/reports

9. Route server views

http://www.caida.org

10.NANOG archive

http://www.merit.edu/mail.archives/html/nanog/maillist.html

IRR Reading List

1. RFC1786 "Representation of IP Routing Policies in a Routing Registry" ftp://ftp.isi.edu/in-notes/rfc1786.txt

2. RATools and RSPL

ftp://ftp.apnic.net/ietf/rfc/rfc2280.txt Tools http://www.isi.edu/ra/* Mailing List <ratoolset@isi.edu>

3. PRIDE

Slides ftp://ftp.ripe.net/pride/docs/course-slides Guide ftp://ftp.ripe.net/pride/docs/guide-2.0txt.{ps}.tar.gz Tools ftp://ftp.ripe.net/pride/tools/*

4. IRR authorisation/notification

ftp://ftp.ripe.net/ripe/docs/ripe-120.txt

5. RADB pointers

http://www.ra.net

http://www.ra.net/.faq.htm

6. ISP run RR User documents

http://infopage.cw.net/Routing