

BGP Tutorial

Philip Smith <pfs@cisco.com>
APNIC 22
4th-8th September 2006
Kaohsiung, Taiwan

Tutorial Outline

- Part 1 Introduction to BGP
 Coffee Break
- Part 2 Deploying BGPLunch
- Part 3 Multihoming
 Coffee Break
- Part 4 Troubleshooting

Presentation Slides

Are available on

ftp://ftp-eng.cisco.com

/pfs/seminars/APNIC22-BGP-part1+2.pdf

And on the APNIC 22 website

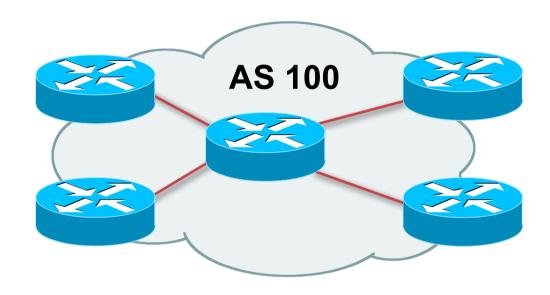
Feel free to ask questions any time

BGP Techniques for Internet Service Providers

- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

BGP Basics

What is this BGP thing?


Border Gateway Protocol

Routing Protocol used to exchange routing information between networks

exterior gateway protocol

- Described in RFC4271
 - RFC4276 gives an implementation report on BGP-4 RFC4277 describes operational experiences using BGP-4
- The Autonomous System is BGP's fundamental operating unit It is used to uniquely identify networks with common routing policy

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique number

Autonomous System Number (ASN)

An ASN is a 16 bit number

1-64511 are assigned by the RIRs

64512-65534 are for private use and should never appear on the Internet

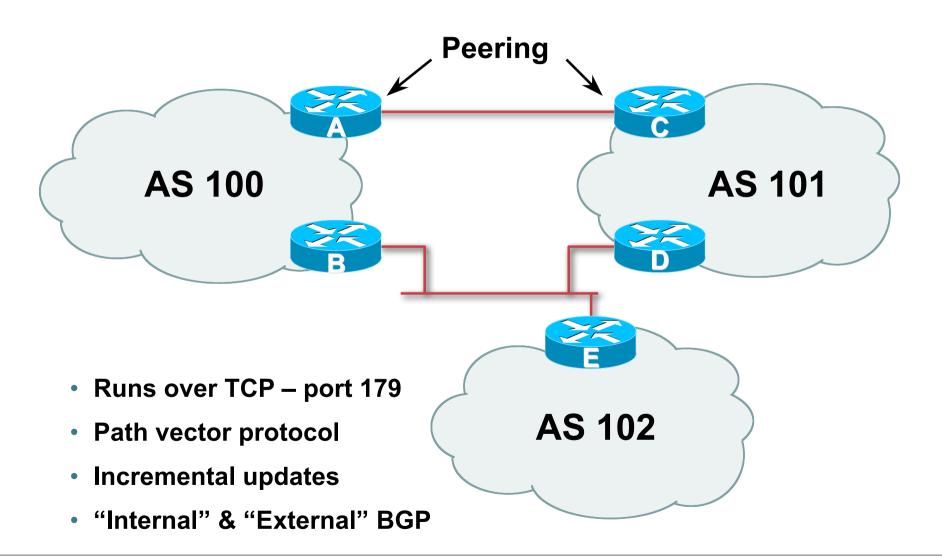
0 and 65535 are reserved

32 bit ASNs are coming soon

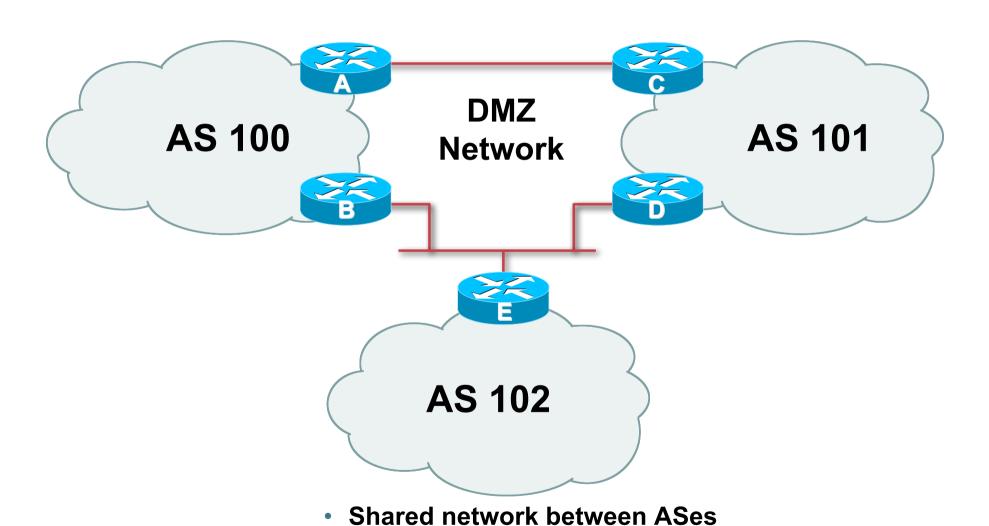
www.ietf.org/internet-drafts/draft-ietf-idr-as4bytes-12.txt

With AS 23456 reserved for the transition

Autonomous System Number (ASN)


- ASNs are distributed by the Regional Internet Registries
- Also available from upstream ISPs who are members of one of the RIRs

Current ASN allocations up to 41983 have been made to the RIRs

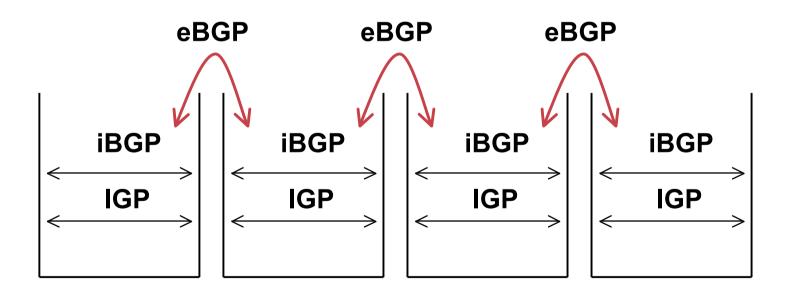

Of these, around 23000 are visible on the Internet

See www.iana.org/assignments/as-numbers

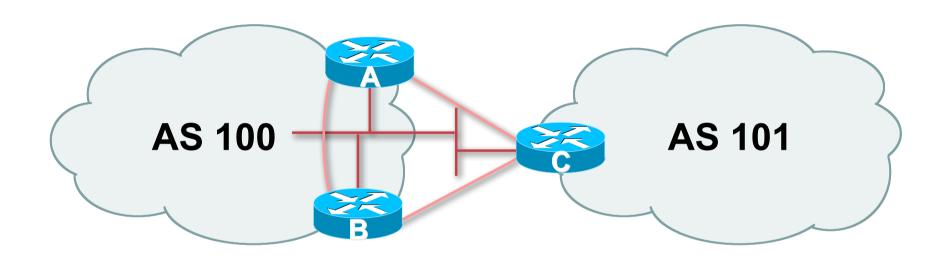
BGP Basics

Demarcation Zone (DMZ)

BGP General Operation


- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the forwarding table
- Best path is sent to external BGP neighbours
- Policies applied by influencing the best path selection

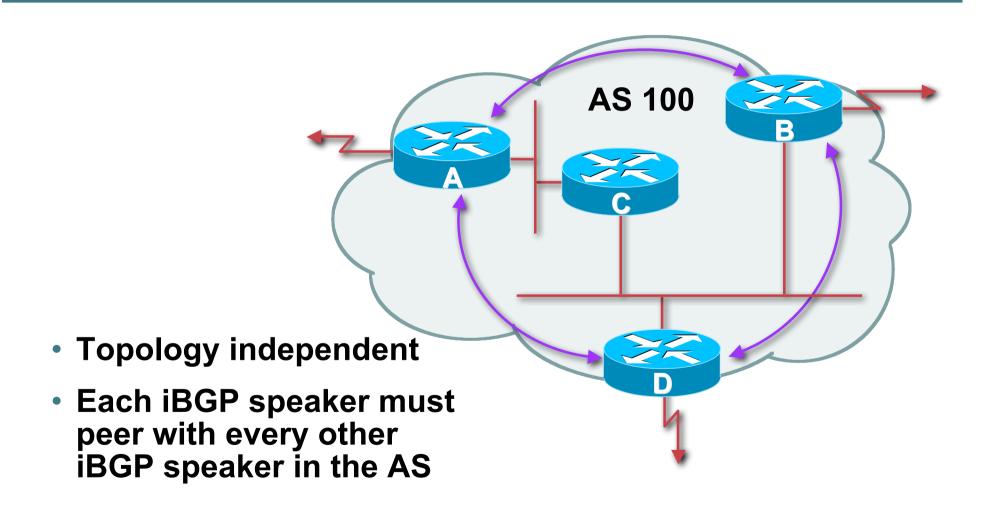
eBGP & iBGP


- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry some/all Internet prefixes across ISP backbone ISP's customer prefixes
- eBGP used to
 exchange prefixes with other ASes
 implement routing policy

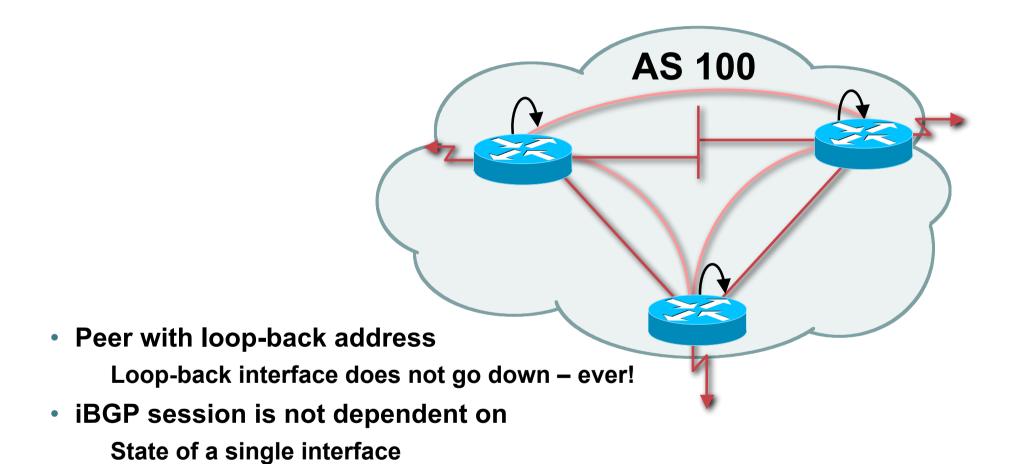
BGP/IGP model used in ISP networks

Model representation

External BGP Peering (eBGP)



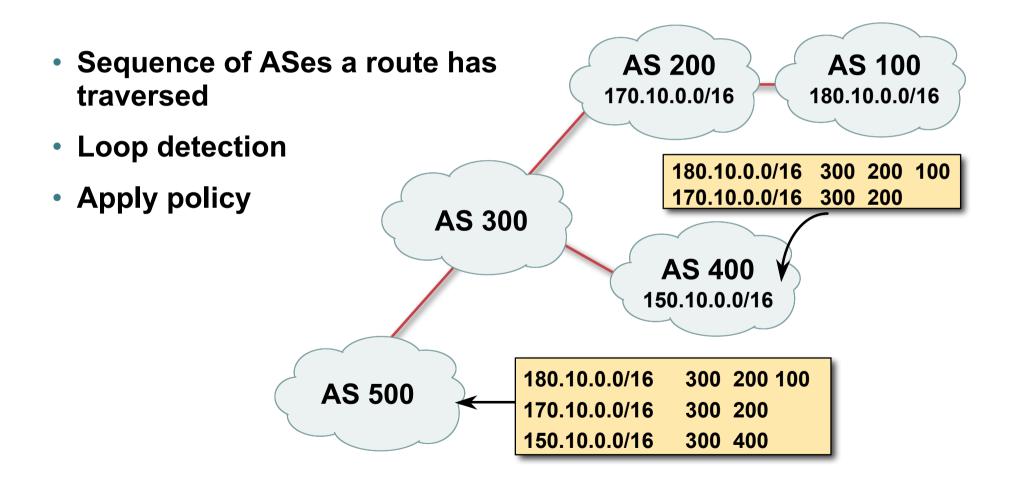
- Between BGP speakers in different AS
- Should be directly connected
- Never run an IGP between eBGP peers

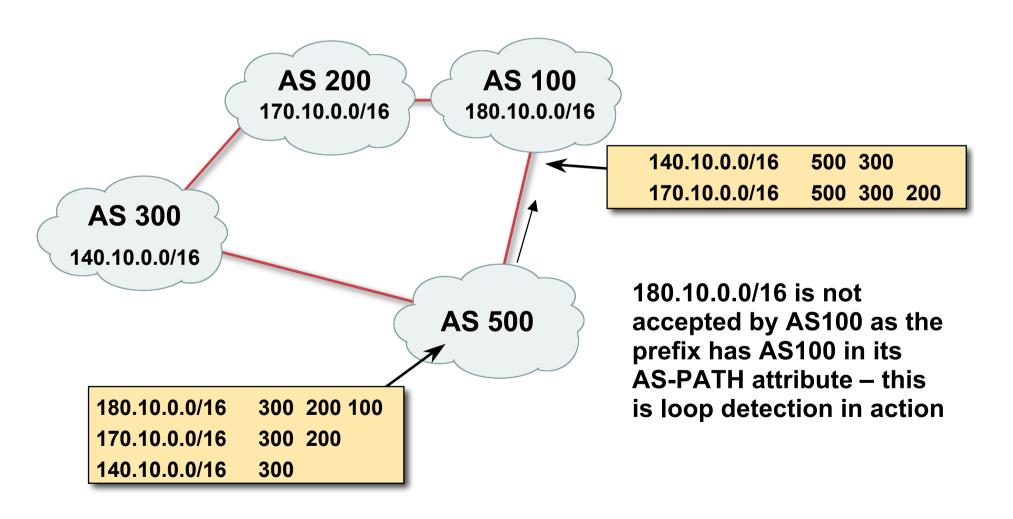

Internal BGP (iBGP)

- BGP peer within the same AS
- Not required to be directly connected
 IGP takes care of inter-BGP speaker connectivity
- iBGP speakers need to be fully meshed they originate connected networks they do not pass on prefixes learned from other iBGP speakers

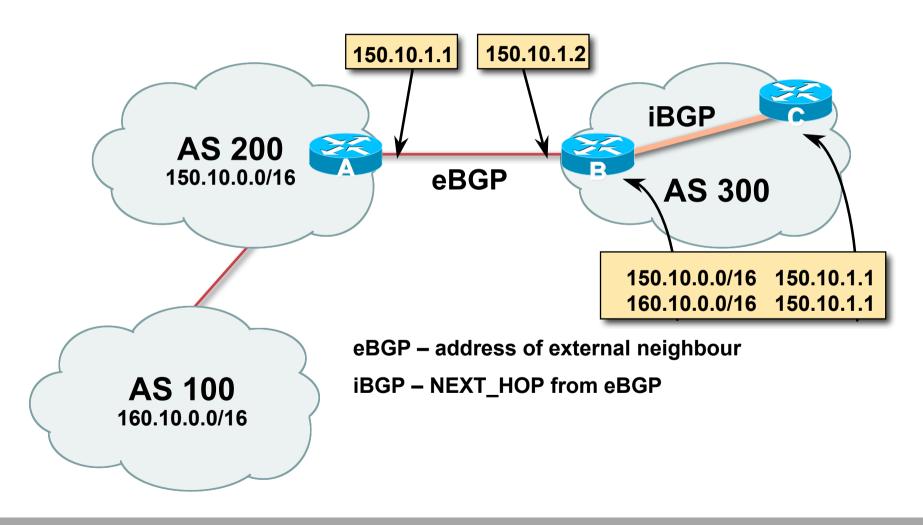
Internal BGP Peering (iBGP)

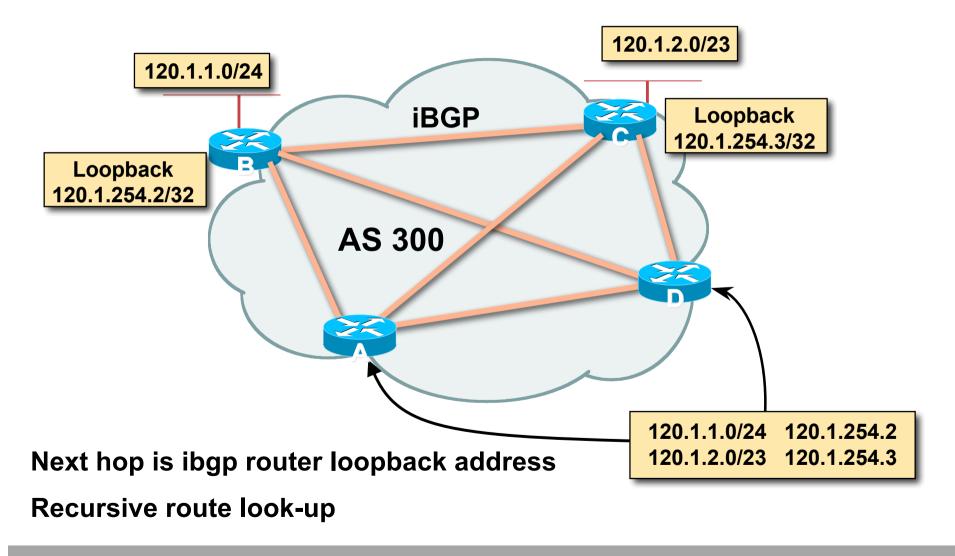
Peering to loopback addresses

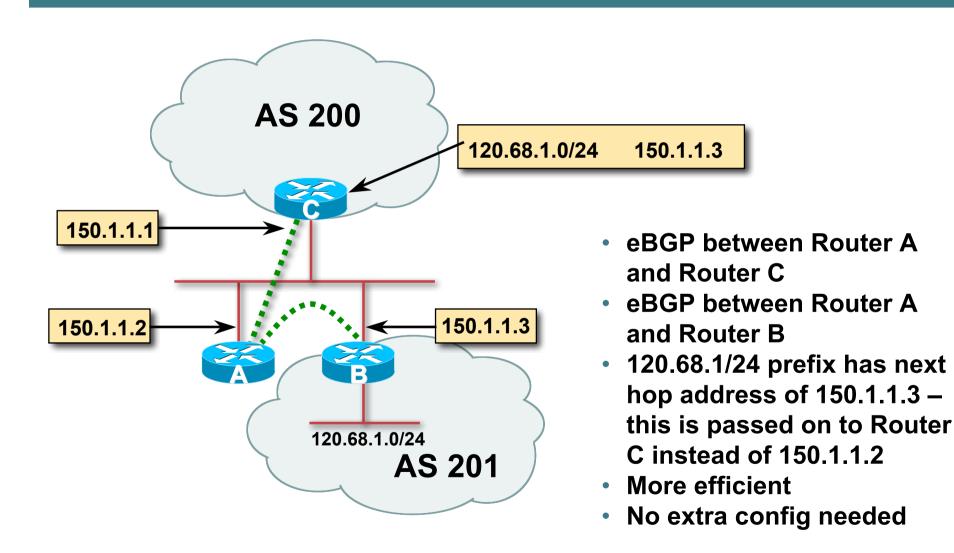

Physical topology


BGP Attributes

Information about BGP


AS-Path


AS-Path loop detection


Next Hop

iBGP Next Hop

Third Party Next Hop

Next Hop (Summary)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Allows IGP to make intelligent forwarding decision

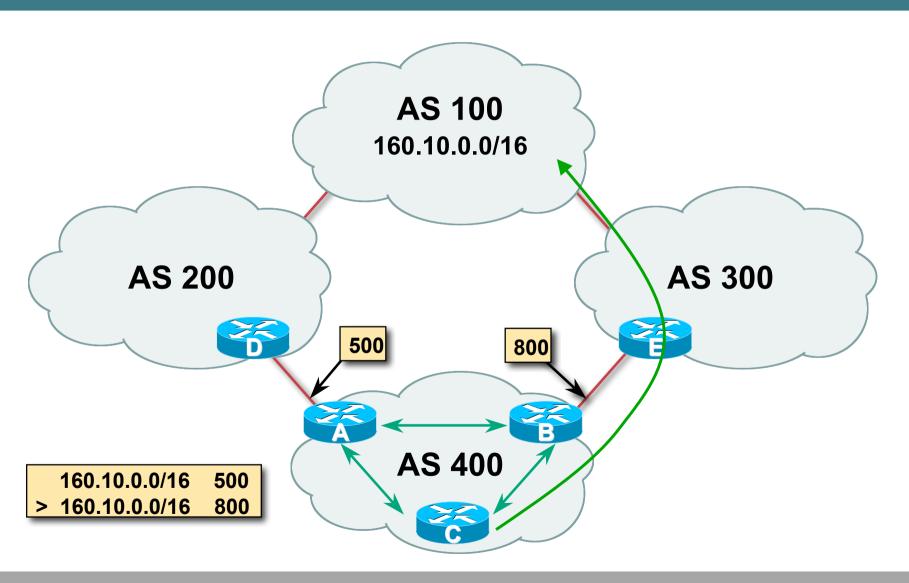
Origin

- Conveys the origin of the prefix
- Historical attribute

Used in transition from EGP to BGP

- Influences best path selection
- Three values: IGP, EGP, incomplete

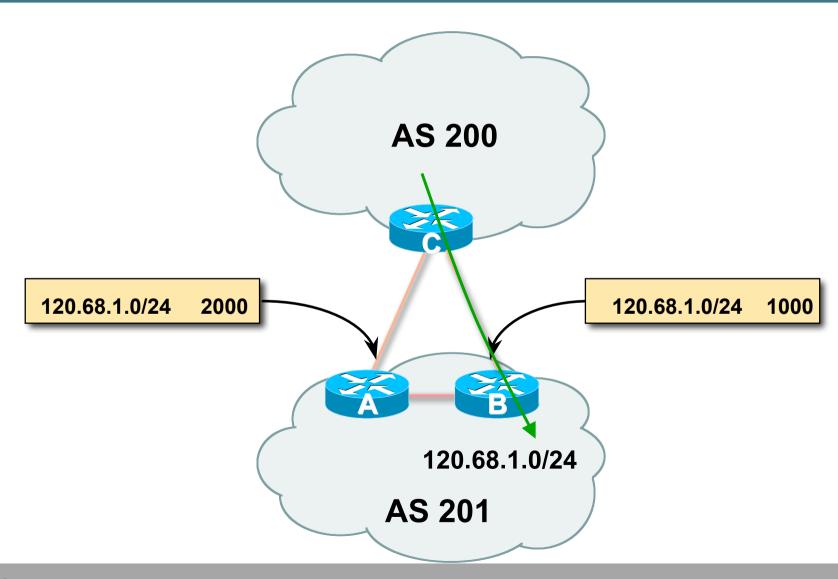
IGP – generated by BGP network statement


EGP – generated by EGP

incomplete – redistributed from another routing protocol

Aggregator

- Conveys the IP address of the router or BGP speaker generating the aggregate route
- Useful for debugging purposes
- Does not influence best path selection


Local Preference

Local Preference

- Local to an AS non-transitive
 Default local preference is 100 (IOS)
- Used to influence BGP path selection determines best path for outbound traffic
- Path with highest local preference wins

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator

- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points determines best path for *inbound* traffic
- Comparable if paths are from same AS
 bgp always-compared-med allows comparisons of MEDs
 from different ASes
- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (RFC4271)

Multi-Exit Discriminator "metric confusion"

MED is non-transitive and optional attribute

Some implementations send learned MEDs to iBGP peers by default, others do not

Some implementations send MEDs to eBGP peers by default, others do not

Default metric value varies according to vendor implementation

Original BGP spec made no recommendation

Some implementations said no metric was equivalent to 2^{32} -1 (the highest possible) or 2^{32} -2

Other implementations said no metric was equivalent to 0

Potential for "metric confusion"

Community

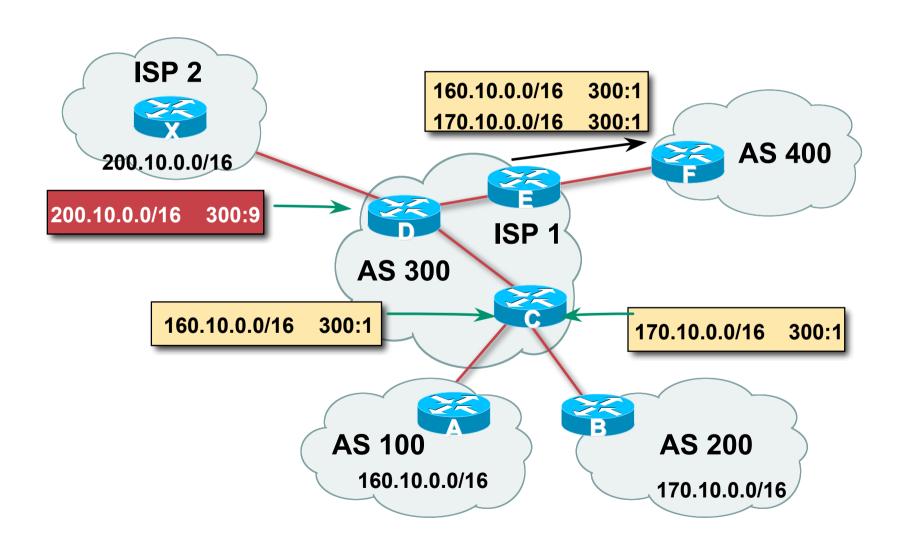
Communities are described in RFC1997

Transitive and Optional Attribute

32 bit integer

Represented as two 16 bit integers (RFC1998)

Common format is < local-ASN>:xx


0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved

Used to group destinations

Each destination could be member of multiple communities

Very useful in applying policies within and between ASes

Community

Well-Known Communities

Several well known communities

www.iana.org/assignments/bgp-well-known-communities

no-export

65535:65281

do not advertise to any eBGP peers

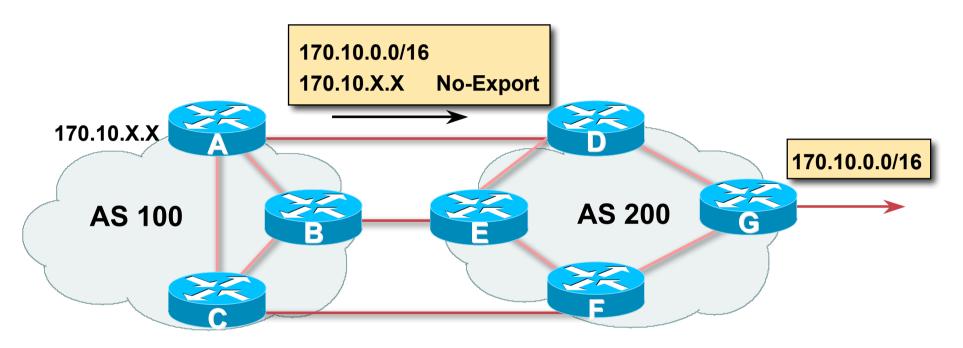
no-advertise

65535:65282

do not advertise to any BGP peer

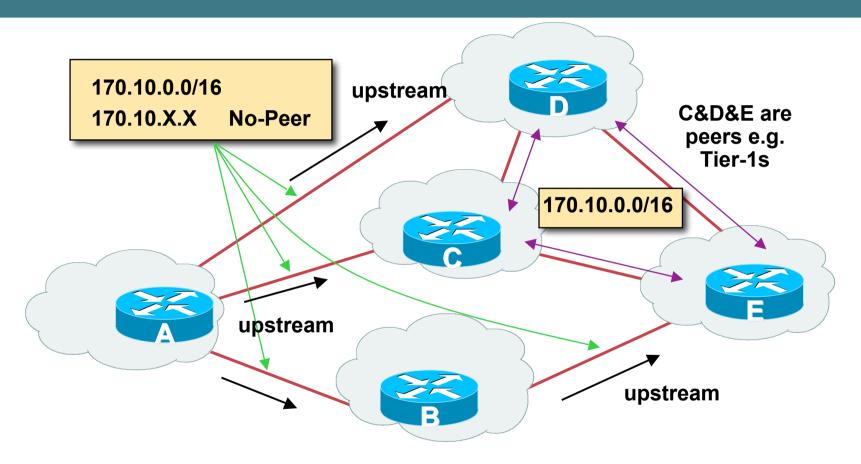
no-export-subconfed

65535:65283


do not advertise outside local AS (only used with confederations)

no-peer

65535:65284


do not advertise to bi-lateral peers (RFC3765)

No-Export Community

- AS100 announces aggregate and subprefixes
 aim is to improve loadsharing by leaking subprefixes
- Subprefixes marked with no-export community
- Router G in AS200 does not announce prefixes with no-export community set

No-Peer Community

 Sub-prefixes marked with no-peer community are not sent to bilateral peers

They are only sent to upstream providers

Community Implementation details

Community is an optional attribute

Some implementations send communities to iBGP peers by default, some do not

Some implementations send communities to eBGP peers by default, some do not

Being careless can lead to community "confusion"

ISPs need consistent community policy within their own networks

And they need to inform peers, upstreams and customers about their community expectations

BGP Path Selection Algorithm

Why Is This the Best Path?

BGP Path Selection Algorithm for IOS Part One

- Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised (Cisco IOS)
- Highest weight (local to router)
- Highest local preference (global within AS)
- Prefer locally originated route
- Shortest AS path

BGP Path Selection Algorithm for IOS Part Two

- Lowest origin code
 IGP < EGP < incomplete
- Lowest Multi-Exit Discriminator (MED)

If bgp deterministic-med, order the paths before comparing If bgp always-compare-med, then compare for all paths otherwise MED only considered if paths are from the same AS (default)

BGP Path Selection Algorithm for IOS Part Three

- Prefer eBGP path over iBGP path
- Path with lowest IGP metric to next-hop
- Lowest router-id (originator-id for reflected routes)
- Shortest Cluster-List

Client must be aware of Route Reflector attributes!

Lowest neighbour IP address

BGP Path Selection Algorithm

In multi-vendor environments:

Make sure the path selection processes are understood for each brand of equipment

Each vendor has slightly different implementations, extra steps, extra features, etc

Watch out for possible MED confusion

Applying Policy with BGP

Control!

Applying Policy in BGP: Why?

Policies are applied to:

Influence BGP Path Selection by setting BGP attributes

Determine which prefixes are announced or blocked

Determine which AS-paths are preferred, permitted, or denied

Determine route groupings and their effects

Decisions are generally based on prefix, AS-path and community

Applying Policy with BGP: Tools

 Most implementations have tools to apply policies to BGP:

Prefix manipulation/filtering

AS-PATH manipulation/filtering

Community Attribute setting and matching

 Implementations also have policy language which can do various match/set constructs on the attributes of chosen BGP routes

Extending BGP

- Documented in RFC2842
- Capabilities parameters passed in BGP open message
- Unknown or unsupported capabilities will result in NOTIFICATION message
- Codes:

0 to 63 are assigned by IANA by IETF consensus64 to 127 are assigned by IANA "first come first served"128 to 255 are vendor specific

Current capabilities are:

0	Reserved	[RFC3392]
1	Multiprotocol Extensions for BGP-4	[RFC2858]
2	Route Refresh Capability for BGP-4	[RFC2918]
3	Cooperative Route Filtering Capability	[ID]
4	Multiple routes to a destination capability	[RFC3107]
64	Graceful Restart Capability	[ID]
65	Support for 4 octet ASNs	[ID]
66	Deprecated 2003-03-06	
67	Support for Dynamic Capability	[ID]

See www.iana.org/assignments/capability-codes

Multiprotocol extensions

This is a whole different world, allowing BGP to support more than IPv4 unicast routes

Examples include: v4 multicast, IPv6, v6 multicast, VPNs

Another tutorial (or many!)

- Route refresh is a well known scaling technique covered shortly
- The other capabilities are still in development or not widely implemented or deployed yet

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

BGP Scaling Techniques

BGP Scaling Techniques

- How does a service provider:
 - Scale the iBGP mesh beyond a few peers?
 - Implement new policy without causing flaps and route churning?
 - Keep the network stable, scalable, as well as simple?

BGP Scaling Techniques

- Route Refresh
- Route Reflectors
- Confederations

Dynamic Reconfiguration

Route Refresh

Route Refresh

BGP peer reset required after every policy change

Because the router does not store prefixes which are rejected by policy

Hard BGP peer reset:

Terminates BGP peering & Consumes CPU
Severely disrupts connectivity for all networks

Soft BGP peer reset (or Route Refresh):

BGP peering remains active

Impacts only those prefixes affected by policy change

Route Refresh Capability

- Facilitates non-disruptive policy changes
- For most implementations, no configuration is needed

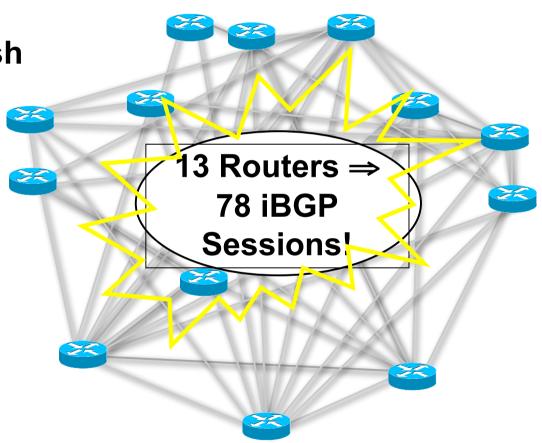
Automatically negotiated at peer establishment

- No additional memory is used
- Requires peering routers to support "route refresh capability" – RFC2918

Dynamic Reconfiguration

- Use Route Refresh capability if supported find out from the BGP neighbour status display Non-disruptive, "Good For the Internet"
- If not supported, see if implementation has a workaround
- Only hard-reset a BGP peering as a last resort

Consider the impact to be equivalent to a router reboot

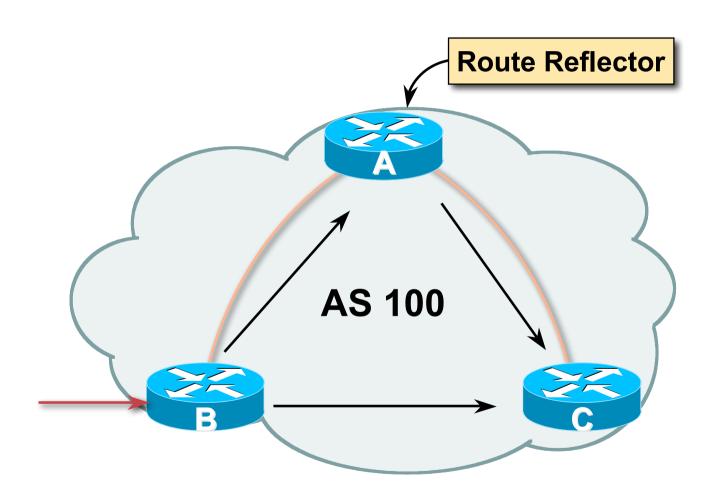

Route Reflectors

Scaling the iBGP mesh

Scaling iBGP mesh

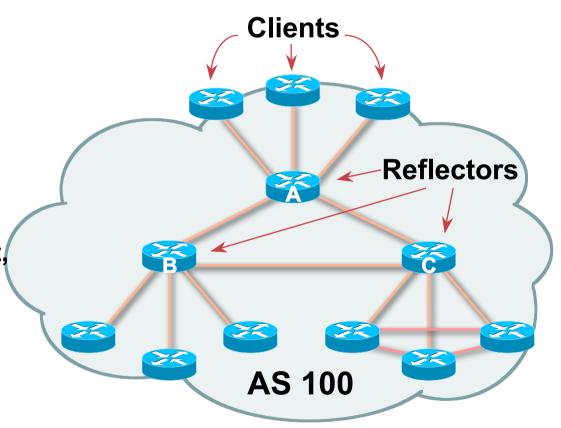
Avoid ½n(n-1) iBGP mesh

n=1000 ⇒ nearly half a million ibgp sessions!



Two solutions

Route reflector – simpler to deploy and run


Confederation – more complex, has corner case advantages

Route Reflector: Principle

Route Reflector

- Reflector receives path from clients and non-clients
- Selects best path
- If best path is from client, reflect to other clients and non-clients
- If best path is from non-client, reflect to clients only
- Non-meshed clients
- Described in RFC4456

Route Reflector Topology

- Divide the backbone into multiple clusters
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

Route Reflectors: Loop Avoidance

Originator_ID attribute

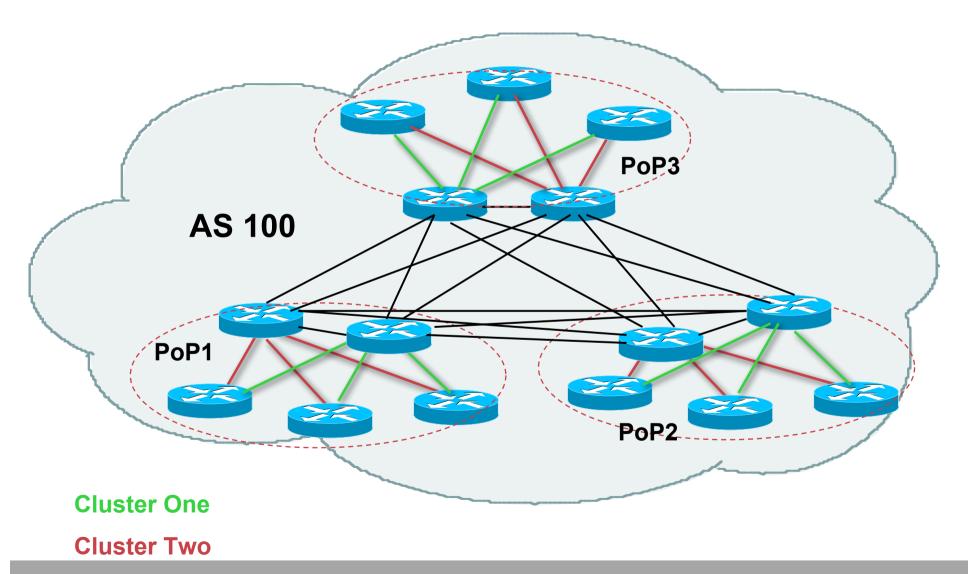
Carries the RID of the originator of the route in the local AS (created by the RR)

Cluster_list attribute

The local cluster-id is added when the update is sent by the RR

Best to set cluster-id is from router-id (address of loopback)

(Some ISPs use their own cluster-id assignment strategy – but needs to be well documented!)


Route Reflectors: Redundancy

- Multiple RRs can be configured in the same cluster
 - not advised!

All RRs in the cluster must have the same cluster-id (otherwise it is a different cluster)

- A router may be a client of RRs in different clusters
 - Common today in ISP networks to overlay two clusters redundancy achieved that way
 - → Each client has two RRs = redundancy

Route Reflectors: Redundancy

Route Reflector: Benefits

- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

Route Reflectors: Migration

Where to place the route reflectors?

Always follow the physical topology!

This will guarantee that the packet forwarding won't be affected

Typical ISP network:

PoP has two core routers

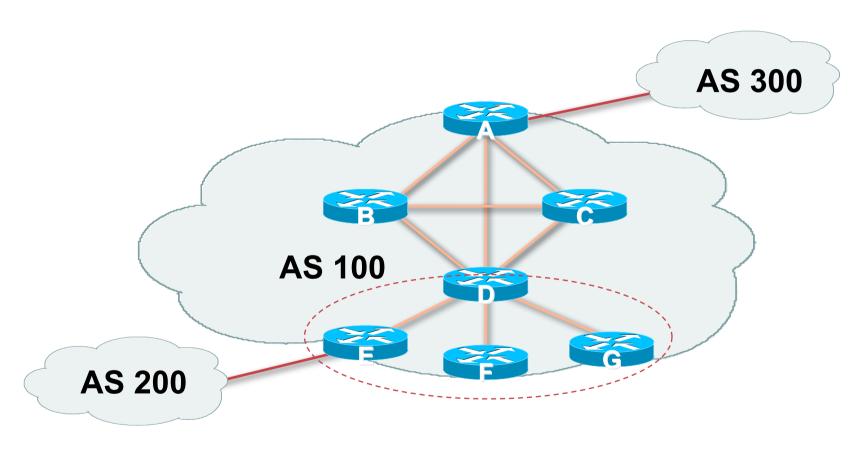
Core routers are RR for the PoP

Two overlaid clusters

Route Reflectors: Migration

Typical ISP network:

Core routers have fully meshed iBGP
Create further hierarchy if core mesh too big
Split backbone into regions


Configure one cluster pair at a time

Eliminate redundant iBGP sessions

Place maximum one RR per cluster

Easy migration, multiple levels

Route Reflector: Migration

 Migrate small parts of the network, one part at a time

BGP Confederations

Confederations

Divide the AS into sub-AS

eBGP between sub-AS, but some iBGP information is kept

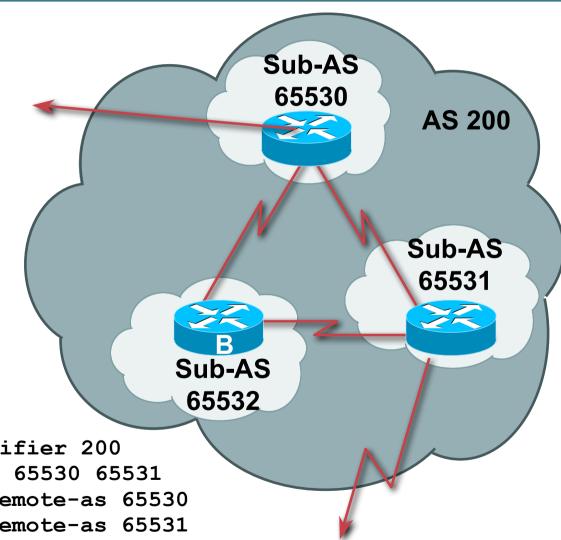
Preserve NEXT_HOP across the sub-AS (IGP carries this information)

Preserve LOCAL_PREF and MED

- Usually a single IGP
- Described in RFC3065

Confederations (Cont.)

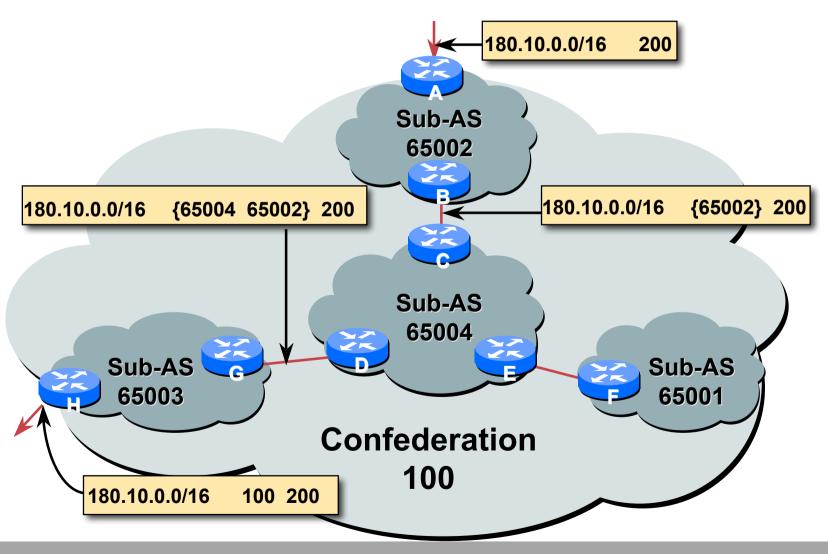
Visible to outside world as single AS –
 "Confederation Identifier"


Each sub-AS uses a number from the private AS range (64512-65534)

iBGP speakers in each sub-AS are fully meshed

The total number of neighbours is reduced by limiting the full mesh requirement to only the peers in the sub-AS

Can also use Route-Reflector within sub-AS


Confederations

Configuration (rtr B):

bgp confederation identifier 200 bgp confederation peers 65530 65531 neighbor 141.153.12.1 remote-as 65530 neighbor 141.153.17.2 remote-as 65531

Confederations: AS-Sequence

Route Propagation Decisions

Same as with "normal" BGP:

From peer in same sub-AS → only to external peers

From external peers → to all neighbors

"External peers" refers to

Peers outside the confederation

Peers in a different sub-AS

Preserve LOCAL_PREF, MED and NEXT_HOP

RRs or Confederations

	Internet Connectivity	Multi-Level Hierarchy	Policy Control	Scalability	Migration Complexity
Confederations	Anywhere in the Network	Yes	Yes	Medium	Medium to High
Route Reflectors	Anywhere in the Network	Yes	Yes	Very High	Very Low

Most new service provider networks now deploy Route Reflectors from Day One

More points about confederations

 Can ease "absorbing" other ISPs into you ISP – e.g., if one ISP buys another

Or can use AS masquerading feature available in some implementations to do a similar thing

 Can use route-reflectors with confederation sub-AS to reduce the sub-AS iBGP mesh

BGP Scaling Techniques

Route Refresh

Use should be mandatory

Route Reflectors/Confederations
 The only way to scale iBGP mesh

Route Flap Damping

Network Stability for the 1990s

Network Instability for the 21st Century!

Route Flap Damping

- For many years, Route Flap Damping was a strongly recommended practice
- Now it is strongly discouraged as it causes far greater network instability than it cures
- But first, the theory...

Route Flap Damping

Route flap

Going up and down of path or change in attribute

BGP WITHDRAW followed by UPDATE = 1 flap

eBGP neighbour going down/up is NOT a flap

Ripples through the entire Internet

Wastes CPU

Damping aims to reduce scope of route flap propagation

Route Flap Damping (continued)

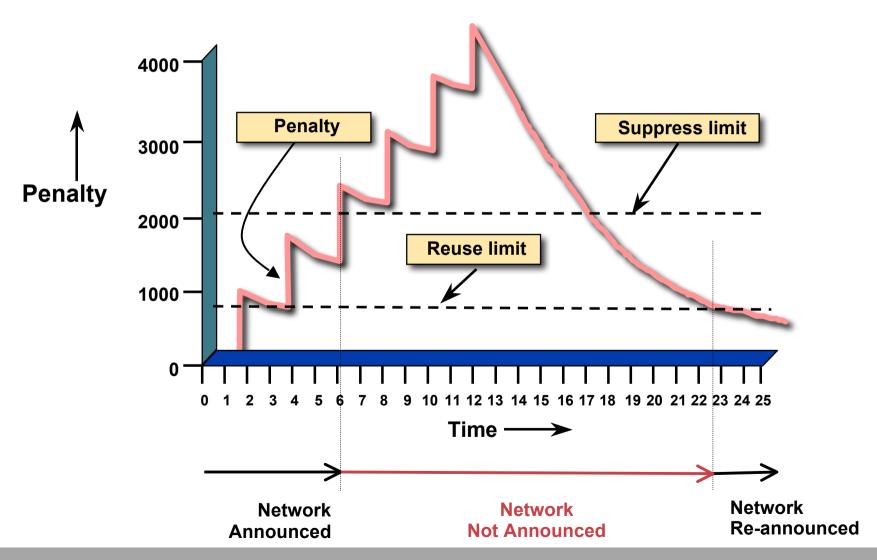
Requirements

Fast convergence for normal route changes

History predicts future behaviour

Suppress oscillating routes

Advertise stable routes


Implementation described in RFC 2439

Operation

Add penalty (1000) for each flap
 Change in attribute gets penalty of 500

- Exponentially decay penalty half life determines decay rate
- Penalty above suppress-limit
 do not advertise route to BGP peers
- Penalty decayed below reuse-limit
 re-advertise route to BGP peers
 penalty reset to zero when it is half of reuse-limit

Operation

Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- Controllable by at least:

Half-life

reuse-limit

suppress-limit

maximum suppress time

Configuration

 Implementations allow various policy control with flap damping

Fixed damping, same rate applied to all prefixes

Variable damping, different rates applied to different ranges of prefixes and prefix lengths

Route Flap Damping History

- First implementations on the Internet by 1995
- Vendor defaults too severe

RIPE Routing Working Group recommendations in ripe-178, ripe-210, and ripe-229

http://www.ripe.net/ripe/docs

But many ISPs simply switched on the vendors' default values without thinking

Serious Problems:

 "Route Flap Damping Exacerbates Internet Routing Convergence"

Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002

- "What is the sound of one route flapping?"
 Tim Griffin, June 2002
- Various work on routing convergence by Craig Labovitz and Abha Ahuja a few years ago
- "Happy Packets"

Closely related work by Randy Bush et al

Problem 1:

One path flaps:

BGP speakers pick next best path, announce to all peers, flap counter incremented

Those peers see change in best path, flap counter incremented

After a few hops, peers see multiple changes simply caused by a single flap → prefix is suppressed

Problem 2:

- Different BGP implementations have different transit time for prefixes
 - Some hold onto prefix for some time before advertising Others advertise immediately
- Race to the finish line causes appearance of flapping, caused by a simple announcement or path change → prefix is suppressed

Solution:

- Do NOT use Route Flap Damping whatever you do!
- RFD will unnecessarily impair access

to your network and

to the Internet

 More information contained in RIPE Routing Working Group recommendations:

www.ripe.net/ripe/docs/ripe-378.[pdf,html,txt]

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

Service Provider use of Communities

Some examples of how ISPs make life easier for themselves

BGP Communities

- Another ISP "scaling technique"
- Prefixes are grouped into different "classes" or communities within the ISP network
- Each community means a different thing, has a different result in the ISP network

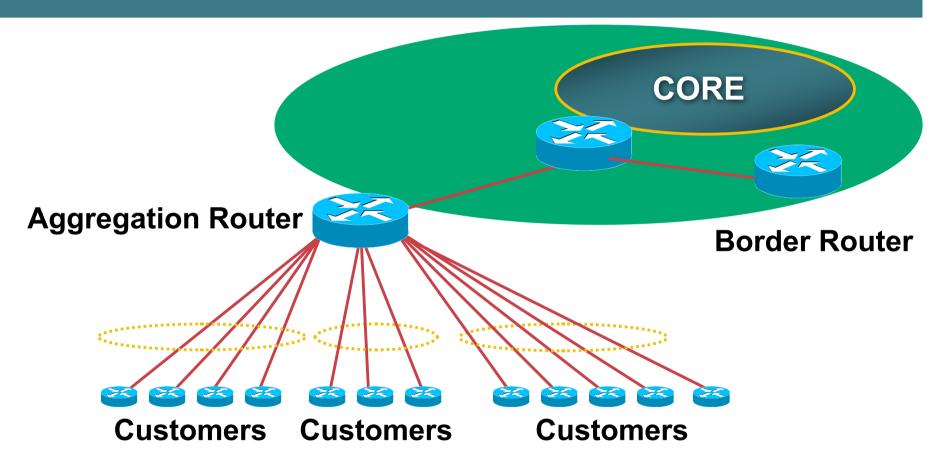
BGP Communities

Communities are generally set at the edge of the ISP network

Customer edge: customer prefixes belong to different communities depending on the services they have purchased

Internet edge: transit provider prefixes belong to difference communities, depending on the loadsharing or traffic engineering requirements of the local ISP, or what the demands from its BGP customers might be

Two simple examples follow to explain the concept


- This demonstrates how communities might be used at the customer edge of an ISP network
- ISP has three connections to the Internet:
 - IXP connection, for local peers
 - Private peering with a competing ISP in the region
 - Transit provider, who provides visibility to the entire Internet
- Customers have the option of purchasing combinations of the above connections

Community assignments:

IXP connection: community 100:2100

Private peer: community 100:2200

- Customer who buys local connectivity (via IXP) is put in community 100:2100
- Customer who buys peer connectivity is put in community 100:2200
- Customer who wants both IXP and peer connectivity is put in 100:2100 and 100:2200
- Customer who wants "the Internet" has no community set
 We are going to announce his prefix everywhere

Communities set at the aggregation router where the prefix is injected into the ISP's iBGP

- No need to alter filters at the network border when adding a new customer
- New customer simply is added to the appropriate community

Border filters already in place take care of announcements

⇒ Ease of operation!

Community Example – Internet Edge

- This demonstrates how communities might be used at the peering edge of an ISP network
- ISP has four types of BGP peers:

Customer

IXP peer

Private peer

Transit provider

- The prefixes received from each can be classified using communities
- Customers can opt to receive any or all of the above

Community Example – Internet Edge

Community assignments:

Customer prefix: community 100:3000

IXP prefix: community 100:3100

Private peer prefix: community 100:3200

- BGP customer who buys local connectivity gets 100:3000
- BGP customer who buys local and IXP connectivity receives community 100:3000 and 100:3100
- BGP customer who buys full peer connectivity receives community 100:3000, 100:3100, and 100:3200
- Customer who wants "the Internet" gets everything

Gets default route originated by aggregation router

Or pays money to get all 190k prefixes

Community Example – Internet Edge

No need to create customised filters when adding customers

Border router already sets communities

Installation engineers pick the appropriate community set when establishing the customer BGP session

⇒ Ease of operation!

Community Example – Summary

- Two examples of customer edge and internet edge can be combined to form a simple community solution for ISP prefix policy control
- More experienced operators tend to have more sophisticated options available

Advice is to start with the easy examples given, and then proceed onwards as experience is gained

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

Deploying BGP in an ISP Network

Okay, so we've learned all about BGP now; how do we use it on our network??

Deploying BGP

- The role of IGPs and iBGP
- Aggregation
- Receiving Prefixes
- Configuration Tips

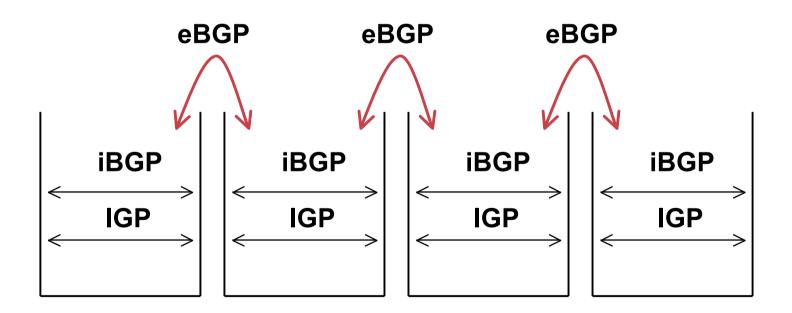
The role of IGP and iBGP

Ships in the night?

Or

Good foundations?

BGP versus OSPF/ISIS


- Internal Routing Protocols (IGPs)
 - examples are ISIS and OSPF
 - used for carrying infrastructure addresses
 - **NOT** used for carrying Internet prefixes or customer prefixes
 - design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

BGP versus OSPF/ISIS

- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry some/all Internet prefixes across backbone customer prefixes
- eBGP used to
 exchange prefixes with other ASes
 implement routing policy

BGP/IGP model used in ISP networks

Model representation

BGP versus OSPF/ISIS

DO NOT:

distribute BGP prefixes into an IGP distribute IGP routes into BGP use an IGP to carry customer prefixes

YOUR NETWORK WILL NOT SCALE

Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes don't ever use IGP
- Point static route to customer interface
- Enter network into BGP process

Ensure that implementation options are used so that the prefix always remains in iBGP, regardless of state of interface

i.e. avoid iBGP flaps caused by interface flaps

Aggregation

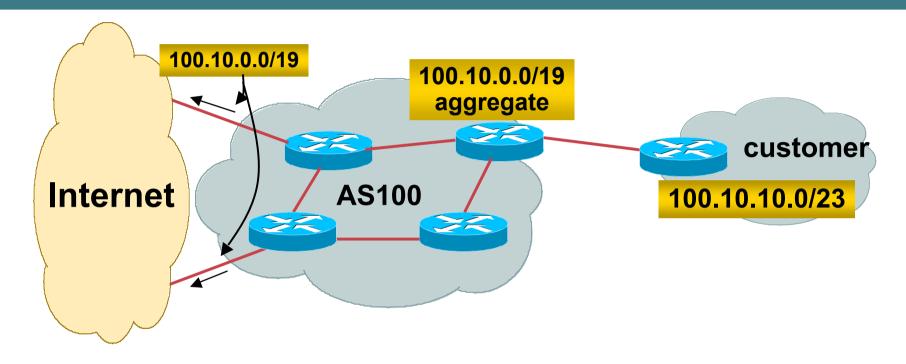
Quality or Quantity?

Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network
- Subprefixes of this aggregate may be:
 - **Used internally in the ISP network**
 - Announced to other ASes to aid with multihoming
- Unfortunately too many people are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table

Aggregation

- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless special circumstances (more later)
- Aggregate should be generated internally


Not on the network borders!

Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- Registries publish their minimum allocation size Anything from a /20 to a /22 depending on RIR
- No real reason to see anything longer than a /22 prefix in the Internet

BUT there are currently >106000 /24s!

Aggregation – Example

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announced /19 aggregate to the Internet

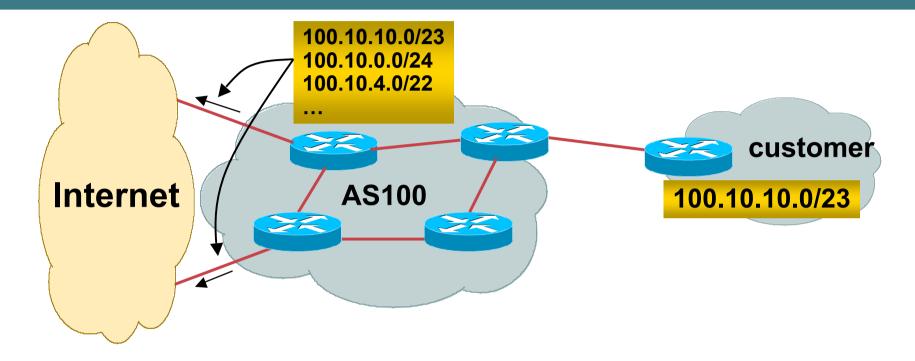
Aggregation – Good Example

- Customer link goes down
 their /23 network becomes unreachable
 /23 is withdrawn from AS100's iBGP
- announced

 no BGP hold down problems

 no BGP propagation delays

 no damping by other ISPs


/19 aggregate is still being

- Customer link returns
 - Their /23 network is visible again

The /23 is re-injected into AS100's iBGP

- The whole Internet becomes visible immediately
- Customer has Quality of Service perception

Aggregation – Example

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announces customers' individual networks to the Internet

Aggregation – Bad Example

Customer link goes down

Their /23 network becomes unreachable

/23 is withdrawn from AS100's iBGP

 Their ISP doesn't aggregate its /19 network block

/23 network withdrawal announced to peers

starts rippling through the Internet

added load on all Internet backbone routers as network is removed from routing table

Customer link returns

Their /23 network is now visible to their ISP

Their /23 network is re-advertised to peers

Starts rippling through Internet

Load on Internet backbone routers as network is reinserted into routing table

Some ISP's suppress the flaps

Internet may take 10-20 min or longer to be visible

Where is the Quality of Service???

Aggregation – Summary

Good example is what everyone should do!

Adds to Internet stability

Reduces size of routing table

Reduces routing churn

Improves Internet QoS for everyone

Bad example is what too many still do!

Why? Lack of knowledge?

Laziness?

The Internet Today (September 2006)

Current Internet Routing Table Statistics

BGP Routing Table Entries	196599
Prefixes after maximum aggregation	107356
Unique prefixes in Internet	95338
Prefixes smaller than registry alloc	98092
/24s announced	106069
only 5707 /24s are from 192.0.0.0/8	
ASes in use	22995

"The New Swamp"

Swamp space is name used for areas of poor aggregation

The original swamp was 192.0.0.0/8 from the former class C block

Name given just after the deployment of CIDR

The new swamp is creeping across all parts of the Internet Not just RIR space, but "legacy" space too

"The New Swamp" RIR Space – February 1999

RIR blocks contribute 49393 prefixes or 88% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks	Block	Networks
24/8	165	74/8	0	124/8	0	205/8	2584
41/8	0	<i>75</i> /8	0	125/8	0	206/8	3127
58/8	0	76/8	0	126/8	0	207/8	2723
59/8	0	80/8	0	188/8	0	208/8	2817
60/8	0	81/8	0	189/8	0	209/8	2574
61/8	3	82/8	0	190/8	0	210/8	617
62/8	87	83/8	0	192/8	6275	211/8	0
63/8	20	84/8	0	193/8	2390	212/8	717
64/8	0	<i>85</i> /8	0	194/8	2932	213/8	1
65/8	0	86/8	0	195/8	1338	216/8	943
66/8	0	87/8	0	196/8	513	217/8	0
67/8	0	88/8	0	198/8	4034	218/8	0
68/8	0	89/8	0	199/8	3495	219/8	0
69/8	0	90/8	0	200/8	1348	220/8	0
70/8	0	91/8	0	201/8	0	221/8	0
71/8	0	121/8	0	202/8	2276	222/8	0
72/8	0	122/8	0	203/8	3622		
73/8	Ö	123/8	0	204/8	3792		

"The New Swamp" RIR Space – February 2006

RIR blocks contribute 161287 prefixes or 88% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks	Block	Networks
24/8	3001	74/8	109	124/8	292	205/8	2934
41/8	41	75/8	2	125/8	682	206/8	3879
58/8	606	76/8	4	126/8	27	207/8	4385
59/8	628	80/8	1925	188/8	1	208/8	3239
60/8	468	81/8	1350	189/8	0	209/8	5611
61/8	2396	82/8	1158	190/8	39	210/8	3908
62/8	1860	83/8	1130	192/8	6927	211/8	2291
63/8	2837	84/8	971	193/8	5203	212/8	2920
64/8	5374	85/8	1426	194/8	4061	213/8	3071
65/8	3785	86/8	650	195/8	3519	216/8	6893
66/8	6292	87/8	629	196/8	1264	217/8	2590
67/8	1832	88/8	328	198/8	4908	218/8	1220
68/8	3069	89/8	113	199/8	4156	219/8	1003
69/8	3315	90/8	2	200/8	6757	220/8	1657
70/8	1597	91/8	2	201/8	1614	221/8	765
71/8	888	121/8	0	202/8	9759	222/8	914
72/8	1772	122/8	0	203/8	9527		
73/8	274	123/8	0	204/8	5474		

"The New Swamp" Summary

RIR space shows creeping deaggregation

It seems that an RIR /8 block averages around 4000 prefixes once fully allocated

So their existing 70 /8s will eventually cause 280000 prefix announcements

Food for thought:

Remaining 59 unallocated /8s and the 73 RIR /8s combined will cause:

528000 prefixes with 4000 prefixes per /8 density

792000 prefixes with 6000 prefixes per /8 density

Plus 12% due to "non RIR space deaggregation"

→ Routing Table size of 887040 prefixes

"The New Swamp" Summary

- Rest of address space is showing similar deaggregation too ⊗
- What are the reasons?

Main justification is traffic engineering

Real reasons are:

Lack of knowledge

Laziness

Deliberate & knowing actions

BGP Report (bgp.potaroo.net)

- 179170 total announcements a few months ago
- 116237 prefixes

After aggregating including full AS PATH info

i.e. including each ASN's traffic engineering

35% saving possible

101167 prefixes

After aggregating by Origin AS

i.e. ignoring each ASN's traffic engineering

8% saving possible

The excuses

- Traffic engineering causes 8% of the Internet Routing table
- Deliberate deaggregation causes 35% of the Internet Routing table

Efforts to improve aggregation

The CIDR Report

Initiated and operated for many years by Tony Bates

Now combined with Geoff Huston's routing analysis

www.cidr-report.org

Results e-mailed on a weekly basis to most operations lists around the world

Lists the top 30 service providers who could do better at aggregating

Efforts to improve aggregation The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis

Flexible and powerful tool to aid ISPs

Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information

Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size

Very effectively challenges the traffic engineering excuse

Status Summary

Table History

Date	Prefixes	CIDR Aggregated
02-05-0	5 157356	108023
03-05-0	5 157392	108044
04-05-0	5 157505	108133
05-05-0	5 157530	108201
06-05-0	5 157716	108341
07-05-0	5 157747	108272
08-05-0	5 157845	108355
09-05-0	5 157874	108388

Plot: BGP Table Size

AS Summary

19498 Number of ASes in routing system

7996 Number of ASes announcing only one prefix

1467 Largest number of prefixes announced by an AS

AS7018: ATT-INTERNET4 - AT&T WorldNet

Services

90497280 Largest address span announced by an AS (/32s)

AS721: DLA-ASNBLOCK-AS - DoD Network

Information Center

Plot: AS count

Plot: Average announcements per origin AS

Report: ASes ordered by originating address span Report: ASes ordered by transit address span

Report: Autonomous System number-to-name mapping (from Registry WHOIS data)

Aggregation Summary

The algorithm used in this report proposes aggregation only when there is a precise match using AS path so as to preserve traffic transit

polic	ies. Aggreg	jation is also	o proposed	across no	n-adverti:	sed address space ('holes').
	09Ma ASnum	•	NetsAggr	NetGain	% Gain	Description
	Table	157925	108381	49544	31.4%	All ASes
	AS4323	1098	223	875	79.7%	TWTC - Time Warner Telecom

AS4323	1098	223	875	79.7%	TWTC - Time Warner Telecom
AS18566	805	8	797	99.0%	COVAD - Covad Communications
AS4134	893	220	673		CHINANET-BACKBONE No.31, Jin-rong Street
AS721	1117	564	553	49.5%	DLA-ASNBLOCK-AS - DoD Network Information Center
AS7018	1467	939	528	36.0%	ATT-INTERNET4 - AT&T WorldNet Services
AS27364	539	22	517	95.9%	ACS-INTERNET - Armstrong Cable Services
AS22773	483	23	460	95.2%	CCINET-2 - Cox Communications Inc.
AS6197	900	506	394	43.8%	BATI-ATL - BellSouth Network Solutions, Inc
AS3602	509	146	363	71.3%	SPRINT-CA-AS - Sprint Canada Inc.
AS17676	431	78	353	81.9%	JPNIC-JP-ASN-BLOCK Japan Network Information Center
AS9929	350	46	304	86.9%	CNCNET-CN China Netcom Corp.
AS4766	574	279	295	51.4%	KIXS-AS-KR Korea Telecom
AS6478	416	123	293	70.4%	ATT-INTERNET3 - AT&T WorldNet Services
AS6140	399	135	264	66.2%	IMPSAT-USA - ImpSat
AS14654	264	6	258	97.7%	WAYPORT - Wayport
AS9583	735	483	252	34.3%	SIFY-AS-IN Sify Limited
AS9443	374	123	251	67.1%	INTERNETPRIMUS-AS-AP Primus Telecommunications
AS7545	493	247	246	49.9%	TPG-INTERNET-AP TPG Internet Pty Ltd
AS1239	886	644	242	27.3%	SPRINTLINK - Sprint
AS15270	272	37	235	86.4%	AS-PAETEC-NET - PaeTec.net -a division of PaeTecCommunications, Inc.
AS23126	254	23	231	90.9%	KMCTELCOM-DIA - KMC Telecom, Inc.
AS4755	516	287	229	44.4%	VSNL-AS Videsh Sanchar Nigam Ltd. Autonomous System
AS7725	415	186	229	55.2%	CCH-AS7 - Comcast Cable Communications Holdings, Inc
AS6198	464	236	228	49.1%	BATI-MIA - BellSouth Network Solutions, Inc
AS5668	488	264	224	45.9%	AS-5668 - CenturyTel Internet Holdings, Inc.
AS2386	853	634	219	25.7%	INS-AS - AT&T Data Communications Services
AS9498	296	79	217	73.3%	BBIL-AP BHARTI BT INTERNET LTD.
AS11456	319	110	209	65.5%	NUVOX - NuVox Communications, Inc.
AS6167	264	67	197	74.6%	CELLCO-PART - Cellco Partnership
AS6517	319	128	191	59.9%	YIPESCOM - Yipes Communications, Inc.
Total	17193	6866	10327	60 12	Ton 30 total

Top 20 Added Routes this week per Originating AS

Prefixes	ASnum	AS Description
	AS7725	· · · · · · · · · · · · · · · · · · ·
108	AS4755	VSNL-AS Videsh Sanchar Nigam Ltd. Autonomous System
52	AS35911	BNQ-1 - Telebec
35	AS13645	BROADBANDONE - BroadbandONE, Inc.
19	AS17488	HATHWAY-NET-AP Hathway IP Over Cable Internet
16	AS9576	SOOKMYUNG-AS SOOKMYUNG WOMEN'S UNIVERSITY
		COGENT Cogent/PSI
15	AS18633	GIANTWEB - Giant Technologies Inc.
		KBT Koos Broadband Telecom
		IWEB-AS - Groupe iWeb Technologies inc.
		Metropolis Intercom
		AS-LLIX - Liberty Lake Internet Portal
		ASTRUM-0001 - OLM LLC
		VTR BANDA ANCHA S.A.
		PRIORITYNETWORKS - Priority Networks Inc.
		WOLCST-AS-AP World online AS, Cybersoft Technologies.
		JAZZNET Jazz Telecom S.A.
		Telefonica de Argentina
		CONNEXION-BY-BOEING-LTN - Connexion by Boeing
11	AS25454	TELEMEDIAAS Telemedia SA Autonomous System

Top 20 Withdrawn Routes this week per Originating AS

Drofivos	ASDUM	AS Description
		LH - Lighthouse Communications, Inc.
		WEBCENTRAL-AS WebCentral
		I-CONNEXION ICX Autonomous System
		Globix Corporation
		SPRINTLINK - Sprint
		ACDNET-ASN1 - ACD.net
-17	AS29257	CBB-IE-AS Connexion by Boeing Ireland, Ltd.
-16	AS20115	CHARTER-NET-HKY-NC - Charter Communications
-16	AS6167	CELLCO-PART - Cellco Partnership
-15	AS17557	PKTELECOM-AS-AP Pakistan Telecom
-14	AS9152	MEGADAT Autonomous System
-14	AS16154	TELECOMS-AS Telecoms-Net Ltd.
-14	AS24219	NFI-AS-AP No Fuss Internet
-13	AS174	COGENT Cogent/PSI
-13	AS10125	DACCESS-AP DATA ACCESS INDIA LIMITED
-13	AS30857	TAURUS-AS Taurus Telecom PJSC
-12	AS17854	CABLELINE-AS-KR BANDOCABLELINE
-12	AS7049	S&M International S.A.
-12	AS4323	TWTC - Time Warner Telecom
-12	AS3561	SAWIS - Savvis

Report: Announced Route count per Originating AS Report: Withdrawn Route count per Originating AS

More Specifics

A list of route advertisements that appear to be more specific than the original Class-based prefix mask, or more specific than the registry allocation size.

Top 20 ASes advertising more specific prefixes

More Specifics	Total Prefixes	ASnum	AS Description
1103	1467	AS7018	ATT-INTERNET4 - AT&T WorldNet Services
1012	1180	AS174	COGENT Cogent/PSI
974	1098	AS4323	TWTC - Time Warner Telecom
880	900	AS6197	BATI-ATL - BellSouth Network Solutions, Inc
801	1117	AS721	DLA-ASNBLOCK-AS - DoD Network Information Center
798	805	AS18566	COVAD - Covad Communications
780	853	AS2386	INS-AS - AT&T Data Communications Services
742	893	AS4134	CHINANET-BACKBONE No.31, Jin-rong Street
730	735	AS9583	SIFY-AS-IN Sify Limited
621	886	AS1239	SPRINTLINK - Sprint
594	994	AS701	ALTERNET-AS - UUNET Technologies, Inc.
583	595	AS20115	CHARTER-NET-HKY-NC - Charter Communications
540	574	AS4766	KIXS-AS-KR Korea Telecom
533	539	AS27364	ACS-INTERNET - Armstrong Cable Services
500	516	AS4755	VSNL-AS Videsh Sanchar Nigam Ltd. Autonomous System
475	488	AS5668	AS-5668 - CenturyTel Internet Holdings, Inc.
470	483	AS22773	CCINET-2 - Cox Communications Inc.
456	493	AS7545	TPG-INTERNET-AP TPG Internet Pty Ltd
453	509	AS3602	SPRINT-CA-AS - Sprint Canada Inc.
452	464	AS6198	BATI-MIA - BellSouth Network Solutions, Inc

Report: ASes ordered by number of more specific prefixes

Report: More Specific prefix list (by AS)

Report: More Specific prefix list (ordered by prefix)

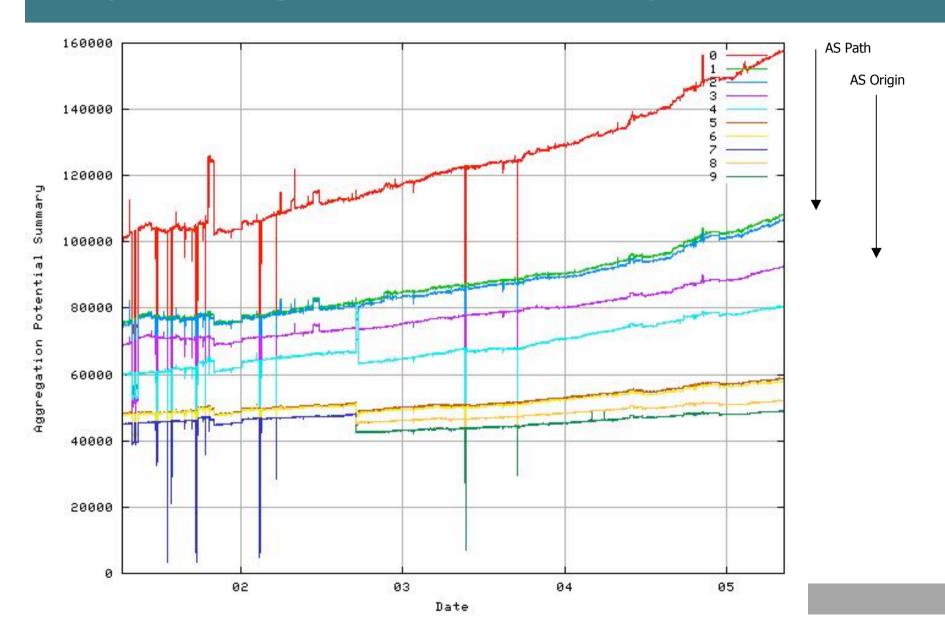
Rank AS Type Originate Addr Space (pfx) Transit Addr space (pfx) Description
24 AS1239 ORG+TRN Originate: 11982080 /8.49 Transit: 145498112 /4.88 SPRINTLINK - Sprint

Aggregation Suggestions

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

Rank AS	AS Name	Current	Wthdw	Aggte	Annce F	Redotn	*
20 AS1239	SPRINTLINK - Sprint	886	307	65	644	242	27.31%

AS 1239: SPRINTLINK	-	
Prefix (AS Path)		Aggregation Action
12.9.182.0/23	4637 1239	
12.22.206.0/24	4637 1239	
24.56.144.0/21	4637 1239	
24.137.128.0/21	4637 1239	
24.221.0.0/17	4637 1239	+ Announce - aggregate of 24.221.0.0/18 (4637 1239) and 24.221.64.0/18 (4637 1239)
24.221.0.0/18	4637 1239	- Withdrawn - aggregated with 24.221.64.0/18 (4637 1239)
24.221.64.0/19	4637 1239	- Withdrawn - aggregated with 24.221.96.0/19 (4637 1239)
24.221.96.0/19	4637 1239	- Withdrawn - aggregated with 24.221.64.0/19 (4637 1239)
24.221.128.0/18	4637 1239	+ Announce - aggregate of 24.221.128.0/19 (4637 1239) and 24.221.160.0/19 (4637 1239)
24.221.128.0/19	4637 1239	- Withdrawn - aggregated with 24.221.160.0/19 (4637 1239)
24.221.160.0/19	4637 1239	- Withdrawn - aggregated with 24.221.128.0/19 (4637 1239)
24.221.192.0/20	4637 1239	
24.221.220.0/22	4637 1239	
24.221.224.0/20	4637 1239	+ Announce - aggregate of 24.221.224.0/21 (4637 1239) and 24.221.232.0/21 (4637 1239)
24.221.224.0/21	4637 1239	- Withdrawn - aggregated with 24.221.232.0/21 (4637 1239)
24.221.232.0/22	4637 1239	- Withdrawn - aggregated with 24.221.236.0/22 (4637 1239)
24.221.236.0/22	4637 1239	- Withdrawn - aggregated with 24.221.232.0/22 (4637 1239)
24.221.242.0/23	4637 1239	
24.221.244.0/22	4637 1239	
24.221.248.0/21	4637 1239	
38.113.4.0/24	4637 1239	
63.90.4.0/24	4637 1239	
63.113.210.0/24	4637 1239	
63.122.77.0/24	4637 1239	
63.122.78.0/23	4637 1239	
63.134.0.0/17	4637 1239	
63.160.0.0/12	4637 1239	
63.178.251.0/24	4637 1239	
63.237.89.0/24	4637 1239	
64.6.224.0/19	4637 1239	
64.9.45.0/24	4637 1239	
64.9.86.0/24	4637 1239	
64.17.64.0/22	4637 1239	



Rank AS AS Name Current Wthdw Aggte Annce Redctn ALTERNET-AS - UUNET Technologies, Inc. 208 140 14.08% 49 AS701 994 68 854

AS 701: ALTERNET-A	AS - UUNET Tec	hnologies, Inc.
Prefix (AS Path)		Aggregation Action
17.255.232.0/24	4637 701	
24.32.66.0/24	4637 701	
24.32.68.0/22	4637 701	+ Announce - aggregate of 24.32.68.0/23 (4637 701) and 24.32.70.0/23 (4637 701)
24.32.68.0/24	4637 701	- Withdrawn - aggregated with 24.32.69.0/24 (4637 701)
24.32.69.0/24	4637 701	- Withdrawn - aggregated with 24.32.68.0/24 (4637 701)
24.32.70.0/24	4637 701	- Withdrawn - aggregated with 24.32.71.0/24 (4637 701)
24.32.71.0/24	4637 701	- Withdrawn - aggregated with 24.32.70.0/24 (4637 701)
24.32.130.0/24	4637 701	
24.32.144.0/22	4637 701	+ Announce - aggregate of 24.32.144.0/23 (4637 701) and 24.32.146.0/23 (4637 701)
24.32.144.0/23	4637 701	- Withdrawn - aggregated with 24.32.146.0/23 (4637 701)
24.32.146.0/23	4637 701	- Withdrawn - aggregated with 24.32.144.0/23 (4637 701)
24.32.163.0/24	4637 701	
24.32.164.0/24	4637 701	
24.206.172.0/24	4637 701	
24.216.0.0/16	4637 701	
24.216.82.0/24	4637 701	- Withdrawn - matching aggregate 24.216.0.0/16 4637 701
24.216.94.0/23	4637 701	- Withdrawn - matching aggregate 24.216.0.0/16 4637 701
24.216.174.0/24	4637 701	
24.240.0.0/15	4637 701	
55.191.7.0/24	4637 701	
62.70.23.0/24	4637 701	
63.0.0.0/9	4637 701	+ Announce - aggregate of 63.0.0.0/10 (4637 701) and 63.64.0.0/10 (4637 701)
63.0.0.0/12	4637 701	- Withdrawn - aggregated with 63.16.0.0/12 (4637 701)
63.16.0.0/12	4637 701	- Withdrawn - aggregated with 63.0.0.0/12 (4637 701)
63.32.0.0/12	4637 701	- Withdrawn - aggregated with 63.48.0.0/12 (4637 701)
63.48.0.0/12	4637 701	- Withdrawn - aggregated with 63.32.0.0/12 (4637 701)
63.64.0.0/12	4637 701	- Withdrawn - aggregated with 63.80.0.0/12 (4637 701)
63.80.0.0/12	4637 701	- Withdrawn - aggregated with 63.64.0.0/12 (4637 701)
63.96.0.0/12	4637 701	- Withdrawn - aggregated with 63.112.0.0/12 (4637 701)
63.112.0.0/12	4637 701	- Withdrawn - aggregated with 63.96.0.0/12 (4637 701)
63.134.153.0/24	4637 701	
63.134.154.0/24	4637 701	
63.134.161.0/24	4637 701	
63.134.162.0/23	4637 701	+ Announce - aggregate of 63.134.162.0/24 (4637 701) and 63.134.163.0/24 (4637 701)
63.134.162.0/24	4637 701	- Withdrawn - aggregated with 63.134.163.0/24 (4637 701)
63.134.163.0/24	4637 701	- Withdrawn - aggregated with 63.134.162.0/24 (4637 701)
63.134.164.0/24	4637 701	
63.134.168.0/23	4637 701	
63.134.176.0/24	4637 701	
63.134.179.0/24	4637 701	
63.141.42.0/24	4637 701	

Aggregation Potential (source: bgp.potaroo.net/as4637/)

Aggregation Summary

Aggregation on the Internet could be MUCH better

35% saving on Internet routing table size is quite feasible

Tools are available

Commands on the routers are not hard

CIDR-Report webpage

Receiving Prefixes

Receiving Prefixes

 There are three scenarios for receiving prefixes from other ASNs

Customer talking BGP

Peer talking BGP

Upstream/Transit talking BGP

 Each has different filtering requirements and need to be considered separately

Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer
- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP
- If the ISP has NOT assigned address space to its customer, then:

Check in the four RIR databases to see if this address space really has been assigned to the customer

The tool: whois –h whois.apnic.net x.x.x.0/24

Receiving Prefixes: From Customers

 Example use of whois to check if customer is entitled to announce address space:

pfs-pc\$ whois -h whois.apnic.net 202.12.29.0

inetnum: 202.12.29.0 - 202.12.29.255

netname: APNIC-AP-AU-BNE

descr: APNIC Pty Ltd - Brisbane Offices + Servers

descr: Level 1, 33 Park Rd

descr: PO Box 2131, Milton

descr: Brisbane, QLD.

country: AU

admin-c: HM20-AP

tech-c: NO4-AP

mnt-by: APNIC-HM

changed: hm-changed@apnic.net 20030108

status: ASSIGNED PORTABLE

source: APNIC

Portable – means its an assignment

to the customer, the customer can

announce it to you

Receiving Prefixes: From Customers

 Example use of whois to check if customer is entitled to announce address space:

ASSIGNED PA - means that it is

to the ISP who assigned it

Provider Aggregatable address space

and can only be used for connecting

\$ whois -h whois.ripe.net 193.128.2.0

inetnum: 193.128.2.0 - 193.128.2.15

descr: Wood Mackenzie

country: GB

admin-c: DB635-RIPE tech-c: DB635-RIPE status: ASSIGNED PA

mnt-by: AS1849-MNT

changed: davids@uk.uu.net 20020211

source: RIPE

route: 193.128.0.0/14

descr: PIPEX-BLOCK1

origin: AS1849

notify: routing@uk.uu.net

mnt-by: AS1849-MNT

changed: beny@uk.uu.net 20020321

source: RIPE

Receiving Prefixes: From Peers

 A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table

Prefixes you accept from a peer are only those they have indicated they will announce

Prefixes you announce to your peer are only those you have indicated you will announce

Receiving Prefixes: From Peers

Agreeing what each will announce to the other:

Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates

OR

Use of the Internet Routing Registry and configuration tools such as the IRRToolSet

www.isc.org/sw/IRRToolSet/

Receiving Prefixes: From Upstream/Transit Provider

- Upstream/Transit Provider is an ISP who you pay to give you transit to the WHOLE Internet
- Receiving prefixes from them is not desirable unless really necessary

special circumstances – see later

Ask upstream/transit provider to either:

originate a default-route

OR

announce one prefix you can use as default

Receiving Prefixes: From Upstream/Transit Provider

 If necessary to receive prefixes from any provider, care is required

```
don't accept RFC1918 etc prefixes ftp://ftp.rfc-editor.org/in-notes/rfc3330.txt
```

don't accept your own prefixes

don't accept default (unless you need it)

don't accept prefixes longer than /24

Check Rob Thomas' list of "bogons"

http://www.cymru.com/Documents/bogon-list.html

Receiving Prefixes

 Paying attention to prefixes received from customers, peers and transit providers assists with:

The integrity of the local network

The integrity of the Internet

Responsibility of all ISPs to be good Internet citizens

Preparing the network

Before we begin...

Preparing the Network

- We will deploy BGP across the network before we try and multihome
- BGP will be used therefore an ASN is required
- If multihoming to different ISPs, public ASN needed:

Either go to upstream ISP who is a registry member, or Apply to the RIR yourself for a one off assignment, or Ask an ISP who is a registry member, or

Join the RIR and get your own IP address allocation too (this option strongly recommended)!

Preparing the Network Initial Assumptions

- The network is not running any BGP at the moment single statically routed connection to upstream ISP
- The network is not running any IGP at all Static default and routes through the network to do "routing"

Preparing the Network First Step: IGP

- Decide on IGP: OSPF or ISIS ©
- Assign loopback interfaces and /32 addresses to each router which will run the IGP

Loopback is used for OSPF and BGP router id anchor Used for iBGP and route origination

Deploy IGP (e.g. OSPF)

IGP can be deployed with NO IMPACT on the existing static routing

e.g. OSPF distance might be 110, static distance is 1

Smallest distance wins

Preparing the Network IGP (cont)

 Be prudent deploying IGP – keep the Link State Database Lean!

Router loopbacks go in IGP

WAN point to point links go in IGP

(In fact, any link where IGP dynamic routing will be run should go into IGP)

Summarise on area/level boundaries (if possible) – i.e. think about your IGP address plan

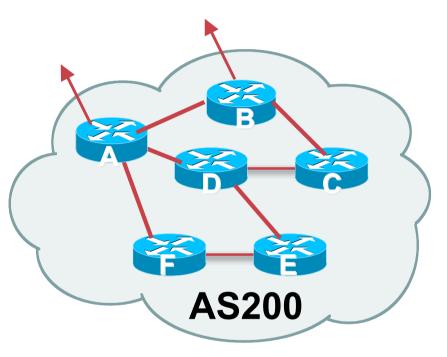
Preparing the Network IGP (cont)

Routes which don't go into the IGP include:

Dynamic assignment pools (DSL/Cable/Dial)

Customer point to point link addressing

(using next-hop-self in iBGP ensures that these do NOT need to be in IGP)

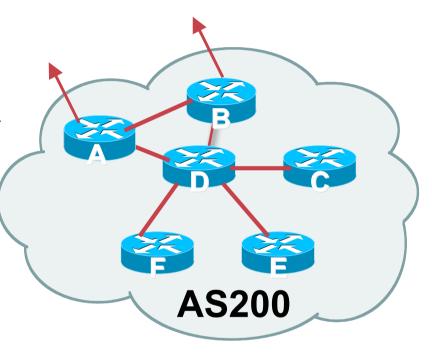

Static/Hosting LANs

Customer assigned address space

Anything else not listed in the previous slide

Preparing the Network Second Step: iBGP

- Second step is to configure the local network to use iBGP
- iBGP can run on
 all routers, or
 a subset of routers, or
 just on the upstream edge
- iBGP must run on all routers which are in the transit path between external connections


Preparing the Network Second Step: iBGP (Transit Path)

- iBGP must run on all routers which are in the transit path between external connections
- Routers C, E and F are not in the transit path

Static routes or IGP will suffice

Router D is in the transit path

Will need to be in iBGP mesh, otherwise routing loops will result

Preparing the Network Layers

- Typical SP networks have three layers:
 - Core the backbone, usually the transit path
 - Distribution the middle, PoP aggregation layer
 - Aggregation the edge, the devices connecting customers

Preparing the Network Aggregation Layer

iBGP is optional

Many ISPs run iBGP here, either partial routing (more common) or full routing (less common)

Full routing is not needed unless customers want full table

Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing

Communities and peer-groups make this administratively easy

Many aggregation devices can't run iBGP

Static routes from distribution devices for address pools

IGP for best exit

Preparing the Network Distribution Layer

Usually runs iBGP

Partial or full routing (as with aggregation layer)

But does not have to run iBGP

IGP is then used to carry customer prefixes (does not scale)
IGP is used to determine nearest exit

 Networks which plan to grow large should deploy iBGP from day one

Migration at a later date is extra work

No extra overhead in deploying iBGP, indeed IGP benefits

Preparing the Network Core Layer

- Core of network is usually the transit path
- iBGP necessary between core devices

Full routes or partial routes:

Transit ISPs carry full routes in core

Edge ISPs carry partial routes only

Core layer includes AS border routers

Decide on:

Best iBGP policy

Will it be full routes everywhere, or partial, or some mix?

iBGP scaling technique

Community policy?

Route-reflectors?

Techniques such as peer groups and peer templates?

Then deploy iBGP:

Step 1: Introduce iBGP mesh on chosen routers make sure that iBGP distance is greater than IGP distance (it usually is)

Step 2: Install "customer" prefixes into iBGP

Check! Does the network still work?

Step 3: Carefully remove the static routing for the prefixes now in IGP and iBGP

Check! Does the network still work?

Step 4: Deployment of eBGP follows

Install "customer" prefixes into iBGP?

- Customer assigned address space
 Network statement/static route combination
 Use unique community to identify customer assignments
- Customer facing point-to-point links

Redistribute connected through filters which only permit point-topoint link addresses to enter iBGP

Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)

Dynamic assignment pools & local LANs

Simple network statement will do this

Use unique community to identify these networks

Carefully remove static routes?

Work on one router at a time:

Check that static route for a particular destination is also learned by the iBGP

If so, remove it

If not, establish why and fix the problem

(Remember to look in the RIB, not the FIB!)

- Then the next router, until the whole PoP is done
- Then the next PoP, and so on until the network is now dependent on the IGP and iBGP you have deployed

Preparing the Network Completion

Previous steps are NOT flag day steps

Each can be carried out during different maintenance periods, for example:

Step One on Week One

Step Two on Week Two

Step Three on Week Three

And so on

And with proper planning will have NO customer visible impact at all

Preparing the Network Configuration Summary

- IGP essential networks are in IGP
- Customer networks are now in iBGP iBGP deployed over the backbone
 Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy eBGP

Configuration Tips

Of templates, passwords, tricks, and more templates

iBGP and IGPs Reminder!

- Make sure loopback is configured on router iBGP between loopbacks, NOT real interfaces
- Make sure IGP carries loopback /32 address
- Consider the DMZ nets:

Use unnumbered interfaces?

Use next-hop-self on iBGP neighbours

Or carry the DMZ /30s in the iBGP

Basically keep the DMZ nets out of the IGP!

Next-hop-self

Used by many ISPs on edge routers

Preferable to carrying DMZ /30 addresses in the IGP

Reduces size of IGP to just core infrastructure

Alternative to using unnumbered interfaces

Helps scale network

BGP speaker announces external network using local address (loopback) as next-hop

Templates

Good practice to configure templates for everything

Vendor defaults tend not to be optimal or even very useful for ISPs

ISPs create their own defaults by using configuration templates

eBGP and iBGP examples follow

Also see Project Cymru's BGP templates

www.cymru.com/Documents

iBGP Template Example

- iBGP between loopbacks!
- Next-hop-self
 Keep DMZ and external point-to-point out of IGP
- Always send communities in iBGP
 Otherwise accidents will happen
- Hardwire BGP to version 4
 Yes, this is being paranoid!
- Use passwords on iBGP session
 Not being paranoid, VERY necessary

eBGP Template Example

BGP damping

Do NOT use it unless you understand the impact

Do NOT use the vendor defaults without thinking

- Remove private ASes from announcements
 Common omission today
- Use extensive filters, with "backup"

Use as-path filters to backup prefix filters

Keep policy language for implementing policy, rather than basic filtering

Use password agreed between you and peer on eBGP session

eBGP Template Example continued

Use maximum-prefix tracking

Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired

Log changes of neighbour state

...and monitor those logs!

Make BGP admin distance higher than that of any IGP

Otherwise prefixes heard from outside your network could override your IGP!!

Limiting AS Path Length

 Some BGP implementations have problems with long AS_PATHS

Memory corruption

Memory fragmentation

 Even using AS_PATH prepends, it is not normal to see more than 20 ASes in a typical AS_PATH in the Internet today

The Internet is around 5 ASes deep on average

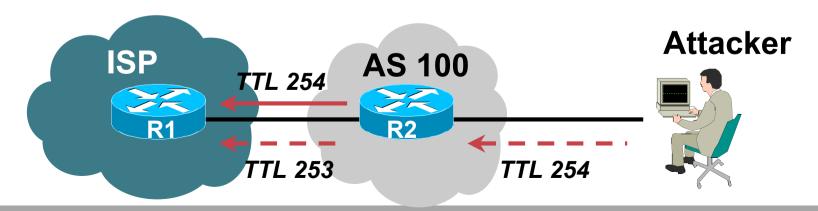
Largest AS_PATH is usually 16-20 ASNs

Limiting AS Path Length

 Some announcements have ridiculous lengths of AS-paths:

This example is an error in one IPv6 implementation

 If your implementation supports it, consider limiting the maximum AS-path length you will accept


BGP TTL "hack"

Implement RFC3682 on BGP peerings

Neighbour sets TTL to 255

Local router expects TTL of incoming BGP packets to be 254

No one apart from directly attached devices can send BGP packets which arrive with TTL of 254, so any possible attack by a remote miscreant is dropped due to TTL mismatch

BGP TTL "hack"

TTL Hack:

Both neighbours must agree to use the feature TTL check is much easier to perform than MD5 (Called BTSH – BGP TTL Security Hack)

Provides "security" for BGP sessions

In addition to packet filters of course

MD5 should still be used for messages which slip through the TTL hack

See www.nanog.org/mtg-0302/hack.html for more details

Passwords on BGP sessions

- Yes, I am mentioning passwords again
- Put password on the BGP session

It's a secret shared between you and your peer

If arriving packets don't have the correct MD5 hash, they are ignored

Helps defeat miscreants who wish to attack BGP sessions

 Powerful preventative tool, especially when combined with filters and the TTL "hack"

Summary

- Use configuration templates
- Standardise the configuration
- Be aware of standard "tricks" to avoid compromise of the BGP session
- Anything to make your life easier, network less prone to errors, network more likely to scale
- It's all about scaling if your network won't scale, then it won't be successful

BGP Tutorial

End of Part 2

Next: Multihoming